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Abstract: The multi-model partitioning approach to adaptive estimation and control was 

introduced by Lainiotis forty years ago. Since then, three generations of multi-

model partitioning algorithms have appeared and numerous applications of the 

multi-model partitioning approach have been developed. In this paper, a 
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is presented, as well as a brief survey of selected applications of the approach. 
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1. INTRODUCTION 

The problem of estimating the parameters and/or states of a nonlinear 

system is a truly complicated one. The majority of realistic systems is either 

by nature nonlinear or has nonlinear observation structures or is partially 

unknown. Moreover, optimal nonlinear filtering is far less precise than its 

linear counterpart. In general, one has to accept that, when dealing with 

nonlinear dynamical system estimation, an analytical solution in closed form 

is not likely to be available, and instead, computational algorithms should be 

sought in their place. 

The difficulties in implementing an optimal solution for the general 

nonlinear problem, led to the search for alternative, suboptimal 

configurations. Such approximations include the well known Kalman filter 

in its extended (nonlinear) forms 
1
, as well as, the various implementations 
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of the Multi-Model Partitioning (MMP) theory introduced by Lainiotis

2-5
 

almost four decades ago. 

The Multi-Model Partitioning approach has received a great deal of 

attention due to its success in decomposing complex problems into simpler 

sub-problems, and in handling effectively structural or parametric 

uncertainties. Since the introduction of the multi-model partitioning 

approach, three generations of multi-model partitioning algorithms have 

appeared
6
 and numerous applications of the multi-model partitioning 

approach have been developed. In this paper, a review of the theory 

underlying the MMP approach is presented, as well as a brief survey of 

selected applications of the approach. 

2. LAINIOTIS MULTI-MODEL PARTITIONING 

THEORY 

2.1 The Dynamical Model  

The general state space model for a discrete time nonlinear stochastic 

system with additive Gaussian excitation and measurement noise has the 

following form: 

  

x (k + 1) = f (k, x(k)) + g (k, x(k)) w (k) (1) 

z (k) = h (k, x(k)) + v (k) (2) 

 

where, f (.), g (.) and h(.) are nonlinear functions of the state that depend on 

the index k, w(k) and v(k) are zero mean, Gaussian noises having variances 

Q(k) and R(k) respectively. The initial state of the system, x(0), is assumed to 

be described by a known probability density function  p(x(0)).  

The objective of the optimal estimator
7-8

 is to obtain the optimal 

estimates of the stochastically varying state vectors Xk = {x(1), x(2), …, 

x(k)}, given the available information contained in the related sequence of 

measurement vectors Zk = {z(1), z(2), …, z(k)}.  

The design of optimal nonlinear estimators may seem promising, 

however, the probability densities involved, are not Gaussian and, as a result, 

they cannot be completely described from the first two moments thus, its 

functional recursive formulation is impractical for real nonlinear estimation 

problems
9
. On the other hand, if the system is linear and the disturbances are 

assumed Gaussian, only a finite statistic is sufficient, consisting of the state's 

mean and error covariance. The linear Kalman
10

, the linear Lainiotis
11

, or 

any other linear optimal filter can provide the means for a recursive update 
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of such a sufficient statistic. A widespread method for simple nonlinear 

problems is the extended Kalman filter (EKF)
1
. In most common EKF 

implementations the nonlinear functions are linearized, via a first-order 

Taylor series expansion at the most recent state estimate.   

Partially unknown, complex or highly nonlinear problems can be 

decomposed into simpler sub-problems (multiple models - MM) that can be 

solved by the aforementioned linear or extended filters. The same approach 

is applied either for uncertainties or nonlinearities and results to a set of 

candidate models that span the model space of the problem. Each model is a 

partial realization of the problem and it is characterized by a parameter set θ 

with an a-priori probability density function p(θ). Vector θ contains the 

unknown parameters and spans a usually discrete space Ωθ, either because θ 

is naturally discrete or because it has been discretised. The discrete 

probability density function becomes p(θi), i = 1, …, S where S is the number 

of possible instances of θ in Ωθ. 

This nonlinear partially unknown state space model has the following 

form: 

  

x (k + 1) = f (k, x(k); θ) + G (k; θ) w (k) (3) 

z (k) = h (k, x(k); θ) + v (k) (4) 

 

and, the linear partially unknown state space model will be: 

 

x (k + 1) =F (k+1,k; θ) x(k) + G (k; θ) w (k) (5) 

z (k) = H (k; θ) x(k) + v (k) (6) 

 

where, F (.), and H(.) are the (possibly unknown) transition and observation 

matrices respectively. The unknown parameters are denoted by the vector θ, 

which, if known, would completely specify the model. w(k) and v(k) are 

uncorrelated zero mean, Gaussian noises having variances Q(k;θ) and R(k;θ) 

respectively. The initial state vector x(0), is conditionally Gaussian for given 

θ with mean x(0/0;θ) and variance p(0/0;θ) uncorrelated to w(k) and v(k). 

2.2 The Multi-Model Partitioning Filter 

The problem is to estimate the system state at time k, given 

measurements of the observation vector up to and including time k. This 

estimate is denoted by ˆ( / )x k k  and the estimation error covariance is 

denoted by ( / )P k k . The solution to this problem is given in by Lainiotis
4
 

and its Multi-Model Partitioning approach, as follows:  
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Given the observation sequence Zk, the Minimum Mean Square Estimate 

(MMSE) ˆ( / )x k k  of x(k) is given by: 

 

     
1

ˆ ˆ/ / ; /
M

i i

i

x k k x k k p k 
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  (7) 

 

where,    ˆ / / kx k k E x k Z   
 and,    ˆ / ; / ;i k ix k k E x k Z     . The a 

posteriori probability of θ assuming the value θi given Zk, p(θi/Zk) = p(θi/k), 

is given by:  
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where, 

         
1/ 2 11

2
/ ; | 1; exp | 1; | 1; | 1;T

i z i i z i iL k k P k k z k k P k k z k k    
  

      
 

 (9) 

 

Here the innovation process  / 1; iz k k   is a zero-mean white process 

with covariance matrix  / 1; izP k k   obtained by a conditional filter (e.g., 

Kalman) matched to the system model with parameter θi:  

 

       ˆ/ 1; ; / 1;i i iz k k z k H k x k k       (10) 

         / 1; ; / 1; ; ;T

z i i i i iP k k H k P k k H k R k         (11) 

 
The estimation error covariance matrix P(k/k) is given by: 

 

              
1

ˆ ˆ ˆ ˆ/ / ; / ; / / ; / /
S

T

i i i i

i

P k k P k k x k k x k k x k k x k k p k   


           (12) 

 

where,           ˆ ˆ/ ; / ; / ; / ;
T

i i i k iP k k E x k x k k x k x k k Z            . 

 Again, the conditional estimates  ˆ / ; ix k k  ,  ˆ / 1; ix k k   and the 

associated error covariance matrices    | ; , / 1;i iP k k P k k  , are obtained 

by a conditional filter (e.g., Kalman) matched to the system model with 

parameter θi.  
The Multi Model Partitioning Filter (MMPF) structure that implements 

the above solution is shown, in a block diagram form, in figure 1.  
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Figure 1. Block diagram of the Multi-Model Partitioning filter implementation. 

 

Comment 1: It is not necessary to use Kalman filters as the model-

conditional filters of the MMPF; any other filter can be employed instead 

(e.g., Extended Kalman Filter, Lainiotis per step partitioning filter, or even 

another MMPF) as long as it provides the quantities required by the MMPF. 

Thus, the MMPF can handle a nonlinear model by employing a nonlinear 

filter as its elemental filter. 

Comment 2: The overall estimate of the MMPF can be taken either to be 

the individual estimate of the elemental filter exhibiting the highest posterior 

probability (called ―MAP – Maximum A Posteriori – estimate‖) or the 

weighted average of the estimates of the elemental filters, where the weights 

are simply the posterior probabilities associated with each estimate (called 

―MMSE – Minimum Mean Square – estimate‖)
12-13

.  

Comment 3: In real life problems, where the unknown parameter usually 

spans a continuous space or follows a probabilistic distribution function, one 

must somehow discretize the space, choosing a finite subset of parameters 

such that it can, in some sense, efficiently ―cover‖ the space. Several such 

discretization strategies have been proposed at times. It is intuitively clear 

that the more terms the finite sum has, the better the approximation. The 

issue of ―how good‖ a finite covering of an infinite space is in the context of 

multiple model estimation and control is discussed in detail
1,14,15

.  

Comment 4: It should be evident that the adaptive estimator inherently 

serves also the purpose of identification of the unknown parameter. When 

the true parameter value lies within the assumed sample space (hence one of 
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the MMPF assumed models is the true one), the estimator converges to this 

value. When the true parameter does not belong to the assumed sample 

space, the estimator converges to that value in the sample space that is 

closest (the one that minimizes the Kullback information measure) to the 

true one
1,35

. 

2.3 Evolution of the MMP Algorithms 

The MMPF presented in 2.3 represents the first generation of Multi-

Model Partitioning algorithms. These algorithms ask all individual sub-

filters to perform simultaneously and they produce the overall output based 

on their performance. The a posteriori probability p(θi/k) for a well 

performing sub-filter increases, while a poorly performing or deviating sub-

filter is finally ignored as its probability approaches zero. 

The superiority of a Multi-Model Partitioning algorithm over a non-MM 

algorithm stems from its flexibility. The MMP algorithm decides and selects 

the best elemental filter a posteriori, while any single model algorithm must 

select its ―best‖ filter a priori.  

The main characteristic of the first MMP generation is that the elemental 

filters work independently. They are also called Autonomous MMP 

algorithms. 

The second generation of MMP focuses on internal cooperation between 

the elemental filters and is best represented by the Interacting Multi-Model 

(IMM) algorithm
17

. Another implementation is the Per-Sample Initialized 

Adaptive Lainiotis Filter (PSI-ALF) where the ―best‖ estimator 

communicates its results to the other candidates in the filter bank
18

.  

The second generation outperforms the algorithms of the first generation 

by interacting and communicating. In the effort for improved performance, 

the first two generations of MMP algorithms are based on a given model set 

and they try to improve the MMP algorithm as well as the elemental filtering 

algorithms. 

The second MMP generation focuses on interaction and collaboration 

between the elemental filters and with the MM estimator. They are also 

called Cooperative MMP algorithms. 

A third generation of MMP algorithms, currently receiving great 

attention, attempts to improve the performance of the Multi-Model 

Partitioning approach by designing a better model set
19-20

 . The structure of 

the filter bank now becomes variable; its members may be added or removed 

and various criteria and measures for the design, comparison, and choice of 

the model-set were proposed
21

. 

Model-set design can be formulated as that of finding the optimal model 

set given data based on optimization techniques. Such an algorithm was 
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proposed

13
 based on a genetic algorithm (GA) combined with the Lainiotis 

MMPF. The initial population of the model set evolves in time according to 

the rule of survival of the fittest. New members are created using the 

Reproduction operator, Crossover operator and Mutation operator. The 

merging of the two techniques led to the development of an algorithm, 

capable of effectively dealing with situations where the unknown parameter 

space is of infinite cardinality
22

. 

The third MMP generation focuses on the improvement of the model set 

and they are usually called Variable-Structure MMP algorithms. 

3. SELECTED APPILCATIONS OF LAINIOTIS 

MULTI-MODEL PARTITIONING THEORY  

3.1 Target Tracking 

Multi-Model Partitioning (MMP) methods have been generally 

considered the main approach to maneuvering target tracking under 

parametric or structural model uncertainty and nonlinearity. MMP methods 

incorporating nonlinear filters are clearly the most promising tool for the 

target tracking problem
23

. 

3.1.1 Radar Target Tracking 

Radar target tracking has been an area of intensive research for many 

years. Traditionally, the problem consists of tracking a target utilizing noisy 

position measurements available to the radar tracking station (figure 2).  
A typical nonlinear target-radar model in state-space form requires,  

A) For the target state: a 1 to 3-dimensional equation (i.e. position, velocity, 

acceleration) for each Cartesian coordinate (X, Y, Z, not being always 
decoupled), and, B) For the radar observations: a 1 or 2-dimensional 

equation (i.e. the observed value and its rate) for each Spherical coordinate 

(range, bearing, elevation). For example, for a target Cartesian coordinate, 
e.g. X, the 2-D state equation may be of the form: 

 

( 1) 1 ( ) / 2
( )

( 1) 0 1 ( ) 1
v

x k T x k T
W k

x k x k

       
        

       
 (13) 

 

and, for a radar spherical coordinate, e.g. the range, the 2-D observation 

equation may be of the form: 
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2 2 2( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

vr

r

x k y k z k V kr k
x k x k y k y k z k z k

r k V k
r k
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    

 

 (14) 

 

 
 
Figure 2. Cartesian (a) and Spherical (b) coordinate systems for radar target tracking. 

 

Early attacks to the problem assumed straight and level path of the target 

and proposed simple, constant gain filtering algorithms, operating on linear 

models, for its solution. This early approach includes the most common α-β 

and α-β-γ filters, as well as their numerous derivatives. This approach, 

naturally, fails when the target is in fact maneuvering (thus introducing 

uncertainty and nonlinearity), which it is likely to do in a real world 

environment. Realization of this fact led to the development of more 

sophisticated (nonlinear) models and algorithms. 

Among the state-space approaches, two classes stand out: the ones based 

on the Extended Kalman Filter (EKF) that has been known to suffer from 

numerical instabilities and from the so-called divergence phenomenon, and 

the ones based on the Multi-Model Partitioning (MMP) approach. The MMP 

algorithms have been shown, in several comparative studies
25,26

 to perform 

better than the EKF-based ones.  

The class of algorithms based on the Multi-Model Partitioning approach 

comprises, among others, the work by Moose
24

 and by Blom and Bar-

Shalom
17

. Tracking algorithms based on the Multi-Model Partitioning 

approach were also designed for the special case of collaborating targets 

such as civilian aircrafts
27,18

. These tracking filters receive Aircraft Derived 

Data (ADD) measurements of heading, through the secondary surveillance 

radars of Air Traffic Control systems. Again all MMP algorithms, the 

adaptive Lainiotis filter, the Per Sample Initialized ALF (figure 3) and the 

Target Path 
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Multi-Model Input estimation filter, performed better than the EKF 

especially in the case of maneuvering targets.  
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Figure 3. Block diagram of the Per Sample Initialized Adaptive Lainiotis Filter, based on its 

Multi-Model Partitioning approach18. 

 

However, there is a price to pay for this improved performance of all 

Multi-Model Partitioning algorithms: increased computational requirements. 

Indeed, as MMP filters (ALF, PSIALF, MMIE, etc.) utilize a bank of sub-

filters (Kalman, EKF, etc.) instead of a single filter, their requirements are 

several times higher. Nevertheless, as already stated, it is possible to 

implement the bank of sub-filters in parallel, thus eliminating the effect of 

any computational overhead to the speed of the MMP algorithm
28

. 

3.1.2 Underwater and Passive Target Tracking 

The problem of target tracking in the ocean environment is of great 

importance in military, oceanographic and fisheries applications. Because of 

the complexity of sound propagation in the ocean medium, the models 

describing the target observation process are nonlinear, and driven by non-

Gaussian signals. Since no optimal solution can be obtained, research has 

focused in developing suboptimal, computationally efficient tracking 

algorithms. A major source of complexity is the possibility of target 
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maneuvering. Algorithms that do not adequately model possible target 

maneuvers are most likely to fail when the target does maneuver
29

. 

In the case of passive tracking of non-maneuvering targets, in Cartesian 

coordinates, the equations of motion of both the target and the observer yield 

the following state and measurement equations
30

: 

 

X k X k v Tx( ) ( )  1  (15) 

Y k Y k v Ty( ) ( )  1  (16) 

v k v kx x( ) ( ) 1  (17) 

v k v ky y( ) ( ) 1  (18) 

( ) arctan
( ) ( )

( ) ( )
( )k

Y k Y k

X k X k
e ko

o





   (19) 

 

where X(k) and Y(k) are the two components of the target position at time k, 

vx and vy are the target velocity components (assumed constant in time), β(k) 

is the measured target bearing, Xο(k) and Yο(k) are the observer position 

components at time k, T is the sampling interval and e'(k) is a stochastic 

series of independent and identically distributed random variables with mean 

m and variance R. The state vector comprising X, Y, vx , vy  is unobservable if 

the observer is stationary or moves continuously on a straight line. Therefore 

the observer is assumed to maneuver. 

The application of the Multi-Model Partitioning approach to this problem 

is not straightforward. Indeed, observe from the model definition equations 

that the sample space of the unknown parameters is not naturally discrete. 

Therefore, some sort of discretization of the parameter space must be 

performed. The attempted approach is to divide the parameter space into M 

non-overlapping sub-areas. Over each sub-area, an independent filter, called 

a "subarea filter" is designed consisting of a bank of N Kalman filters and 

the MMPPF equations. It is clear that M such filters are required. 

In the case of passive tracking of maneuvering targets, all models 

describing the observation process (i.e. the relative target-observer motion) 

are inherently nonlinear. Use of the modified polar set of coordinates
31

 has 

been shown to be beneficial over the use of the Cartesian coordinate system. 

The problem of estimating the maneuvering target‘s relative position is 

shown to be equivalent to the problem of estimating an unknown and time-

varying bias term of the plant noise process
29

. Several algorithms have been 

reported in the literature, however, all these algorithms pertain to the case of 

time-invariant unknown bias, or at best to slowly time-varying bias; hence 

they are inappropriate for the case at hand.  

In order to tackle the above problem an algorithm is developed
32,33

 

capable of efficiently handling the problem of state estimation with time-
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varying unknown bias of the plant noise process. The algorithm is derived by 

using the generic Multi-Model Partitioning approach to estimation and 

control, coupled with conventional constant bias estimation algorithms. 

The proposed algorithm operates on a bank of elemental filters, each of 

which is conditioned on a change in bias taking place at a certain point of 

time. Two bias estimators, taken from the control literature, have been used 

as elemental filters in two different implementations of the proposed 

algorithm (figure 4). 

The results show that the proposed algorithm performs very well even in 

adverse conditions, such as long range and high noise. Furthermore, it is able 

to detect fast enough and cope with abrupt, large-scale target maneuvers. 

 

 
 

Figure 4: Block diagrams of the proposed Multi-Model Partitioned bias estimation algorithm. 

 

Another problem closely related to passive target tracking is the problem 

of towed array shape estimation. This problem has received considerable 

attention in the past few years due to its importance in sonar and seismic 

applications
34

. It is widely recognized that the shape of the towed array plays 

a critical role in the sophisticated processing techniques of hydrophone data. 
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In the past many methods have been proposed for estimating the shape of a 

towed array; such a method is using Kalman filters
35

 for the task. The 

Kalman filter, at each instant in time, gives the least mean square estimate of 

the state of the system, when all the previous sampled time history of the 

measurement sensors is taken into account.  

The approaches based on the Kalman filter do not usually perform 

adequately when facing a gross maneuver (such as a turn) or a perturbation 

of the ideal array shape under steady tow conditions. In such cases adaptive 

algorithms outperform the conventional Kalman filter-based ones.  

Lainiotis et al.
36

, implemented an algorithm, based on the generic Multi-

Model Partitioning filtering theory of Lainiotis, in the problem of towed 

array shape estimation is proposed with satisfactory results. 

In general, the generic MMP approach has been employed successfully 

and, practically important and performance efficient classes of passive 

underwater target tracking algorithms have been developed. These classes 

contain non-adaptive as well as adaptive target tracking algorithms, for both 

maneuvering and non-maneuvering targets. Both classes of algorithms are 

highly beneficial over previously reported ones with regards to performance. 

The exploitation of the parallelism inherent in these algorithms leads to 

implementations highly efficient from a computational point of view. 

3.1.3 Real-Time Ship Motion Estimation 

Accurate and real-time estimation of a ship's motion is of great 

importance to many ship-related problems, such as, ship steering, dynamic 

ship positioning, aircraft takeoff/landing in carriers, marine oil exploration, 

and offshore platforms. In these cases it is desirable to have accurate 

estimates and predictions of the motions, velocities, and accelerations of the 

ship, based on knowledge of the ship's dynamics and on noisy measurements 

of speed, position, sea state, and other quantities
37

. 

Unfortunately, ship dynamics are in reality time varying and dependent 

upon exogenous factors, such as for example the sea state. Therefore, most 

approaches, in order to use the Kalman filter theory, are based on 

simplifying assumptions, which sometimes render them completely 

inappropriate for any practical purpose. Kalman filter theory is known to 

produce low quality estimates when the mathematical model used to 

describe the physical problem, is in effect in disagreement with reality. 

Moreover, a fact usually overlooked (simply because the Kalman filter 

theory cannot cope with it) is that the initial conditions of any filter designed 

to operate on a ship model may not be initialized with Gaussian initial 

conditions. 
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The use of the Multi-Model Partitioning theory in designing filters for 

ship motion estimation, under time varying sea conditions and non-Gaussian 

initial conditions, is demonstrated by Lainiotis et al.
37-39

. Their work focused 

on those components of a ship's motion that are of concern to a filter 

designer such as, the heave and the roll, i.e., the translational motion along 

the vertical axis of the ship and the rotational motion along the longitudinal 

axis of the ship, respectively. This leads to a deconvolution problem, where 

several techniques have been proposed. One of the most advertised and 

modern deconvolution techniques is Minimum Variance Deconvolution, 

whereby results of state-space estimation and Kalman filter theory are 

brought to bear. When faced with the deconvolution problem the researchers 

developed, based on the generic Multi-Model Partitioning approach of 

Lainiotis, two classes of algorithms for solving deconvolution problems: a 

non-adaptive class and an adaptive class. The former class is used when all 

system parameters and the system input are completely known, whereas the 

latter class is used when our knowledge of the system's characteristics and/or 

of the system input is incomplete.  

Their results show that the non-adaptive class is preferable over 

previously reported techniques in multisensor cases. The adaptive class of 

algorithms is naturally more computationally involved, but by using parallel 

processing capabilities currently available and by exploiting the parallelism 

inherent in these algorithms, the computational overhead is dramatically 

increased. In any case, the overall performance/computational complexity 

ratio is favorable. Both classes of algorithms are capable of effectively 

coping with non-Gaussian initial state statistics and highly beneficial over 

previously reported ones with regards to performance.  

Further work of Lainiotis et al.
40-41

 investigated the combined application 

of the Multi-Model Partitioning theory and Neural Networks for heave 

compensation in ship position estimation.  

3.1.4 Direction of Arrival (DOA) Estimation 

The problem of direction of arrival (DOA) estimation given a set of 

measurements of the output of a sensor array has been a topic of 

considerable interest in the literature. Much of the recent work in array 

processing has focused in developing high resolution methods for 

determining the incident angles of plane waves received by an array of 

sensors.  This problem has important applications in areas such as radar, 

sonar, radio and microwave communication, underwater acoustics and 

source localization, and geophysics. The schematic representation of the 

Direction of Arrival (DOA) problem is shown in figure 5. 
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By considering the above m element array of sensors and n far-field point 

sources, we can define the (m x 1) vector a(φi) to be the complex array 

response   2 ( 1)
1, , , ...,i i i i i i

T
j j j m

i e e e
            for a source at direction φi. 

Assuming that n signals are simultaneously intercepted the m sensors, under 

the narrowband assumption, the array output z(t) is modeled by an equation 
of the form: 
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Figure 5. Schematic representation of the Direction of Arrival (DOA) problem. 

 

Most of the proposed solutions employ the Maximum Likelihood (ML) 

approach. Sub-optimal techniques with reduced computational load are also 

quite popular, such as the Minimum Variance (MV) method, the MUSIC 
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method, the related Minimum Norm method, the ESPRIT estimator and the 

weighted subspace fitting (WSF) algorithm. These methods are either off-

line or two-step processing methods and their performance is critically 

dependent on the validity of their underlying assumptions.  

Moreover, the basic assumption made when such methods are employed 

is that the number of sources is known. In many practical situations, 

however, this prior knowledge may well be unavailable. One possible 

approach to the solution of this detection problem is based on the application 

of information theoretic criteria for model order selection such as, the Final 

Prediction Error (FPE) criterion, the Akaike's Information Criterion (AIC) 

and the Minimum Description Length (MDL) Criterion. Most of the 

techniques that result from the above criteria are based on and restricted by 

the assumption that the data are Gaussian and upon asymptotic results. In 

any case, situations when the number of emitting sources is varying in time 

cannot efficiently be handled by existing DOA methods. 

The proposed approach
47,48,49

, addresses the combined problem of 

detecting the number of emitting sources and estimating their directions of 

arrival and as a side effect, also estimates the received signal envelopes. The 

problem is first transformed into the time-domain, allowing all the powerful 

arsenal of related filtering techniques to be brought to bear. The problem is 

thus reformulated, so that the measurement equation is expressed as a non-

linear function of the extended location vector, which is augmented to 

contain the source locations as well as the emitted signals.  

Two well known advanced estimation techniques are combined, the 

Multi Model Partitioning (MMP) approach
2,8

 with the Extended Kalman 

Filter (EKF)
2
, for general (not necessarily Gaussian) data PDFs. A bank of 

EKFs is implemented, each matching a different conditional model. 

The Multi Model Partitioning Filter is used to evaluate the conditional 

models, by computing the a posteriori probability that each candidate model 

is the correct one. The decision is based on the maximum a posteriori 

probability (MAP) criterion. The overall estimate of the MMPF can be taken 

either to be the individual estimate of the elemental filter exhibiting the 

highest posterior probability (called ―MAP –Maximum A Posteriori- 

estimate‖) or the weighted average of the estimates of the elemental filters, 

where the weights are simply the posterior probabilities associated with each 

estimate (called ―MMSE – Minimum Mean Square- estimate‖)
28,13

. 

The proposed method addressed the general problem of the DOA 

estimation from a new perspective by simultaneously estimating the number 

of sources, as well as the directions of arrival and the signals emitted. The 

reformulation of the problem led to a nonlinear state-space model with 

partially unknown structure and a number of different models that possibly 
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fit the data and the multiple models are evaluated, using the Multi-Model 

Partitioning algorithm. The method is adaptive, as it is not only able to 

identify the correct number of sources, but to track changes in the model 

structure in real time as well. Thus, the method handles also successfully the 

problem of a variable number of sources (figure 6). Finally, note that the 

algorithm exhibits a high degree of parallelism; thus, it can be implemented 

in a parallel processing environment. 

 

 
 
Figure 6. Detection and estimation results for 1-3 sources at directions 10ο, 30ο and 50ο. 

Dotted lines indicate a sliding window of 40 snapshots used with conventional algorithms. 

3.2 Oil Exploration and Seismic Signal Processing 

One of the popular methods used nowadays for oil exploration is the 

seismic method. Basically it consists of artificially generating seismic waves 

(wavelets), measuring the reflected signal, and processing it to determine the 

nature of the subsurface layers. This processing is performed using 

techniques cumulatively known as deconvolution techniques, the name 

stemming from the fact that they reproduce a system's input based on 

knowledge of the system's transfer function characteristics and of the 

system's response.  

Although several deconvolution techniques have been proposed at times 

(e.g. Minimum Variance Deconvolution), they do not compensate model 

uncertainty that can be either, parametric due to an unknown finite-

dimensional parameter vector, or, structural due to an unknown functional 

form of the model
42

. 
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The signal received by a seismic sensor (often called the seismic trace) is 

described by the following convolution summation model, 

 

z k V k n k j V k j n kR

j

k

( ) ( ) ( ) ( ) ( ) ( )    



 
1

 (21) 

 

where VR(k)  is the noise-free seismic trace, n(k) is measurement noise, V
+
(i) 

is a sequence associated with the basic seismic wavelet and μ(j) is the 

reflection coefficient sequence, assumed random, zero-mean and white. The 

signal VR(k) is a superposition of wavelet replicas reflected from the 

interfaces of earth's subsurface layers, while the μ(j)'s are related to interface 

reflection and transmission coefficients. Our objective is to determine the 

values of the μ(j) sequence. The above model is shown
43

 to be equivalent to 

a state-space set of model equations presented in section 2.1. 

The possibility that the filter designer may be faced with the task of 

designing an optimal filter in the face of incomplete model knowledge 

occurs more often than not in practice, since it is virtually impossible to 

accurately model any physical process, especially when this process is 

inherently nonlinear and/or nonstationary, as is the case with geophysical 

exploration methods.  

Katsikas and Lainiotis in
42

 developed two classes of algorithms for 

solving the seismic signal deconvolution problem: a non-adaptive class and 

an adaptive class, as well as a distributed version of the non-adaptive class. 

All algorithms have been developed by using the generic Multi-Model 

Partitioning approach
2,4

.  

The non-adaptive class is used when all system parameters and the 

system input are completely known, whereas the adaptive class is used when 

our knowledge of the system's characteristics and/or of the system input is 

incomplete. The algorithms derived with the use of the Lainiotis filter and 

smoother have been found to be superior in performance, especially in high 

SNRs, and superior in computational efficiency in multisensor cases that are 

exactly the situations of practical interest. 

A distributed version of the algorithm is also developed. In geophysical 

applications the number of sensors (geophones) varies from a few hundred to 

several thousands and the sensors are usually located in different local 

subsystems (geophone clusters). A distributed algorithm allows local 

measurements to be processed near the sensing devices and the generated 

local estimates are then communicated to the central facility for further 

processing (figure 7). 
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The adaptive class of algorithms is naturally more computationally 

involved, but by using parallel processing capabilities currently available 

and by exploiting the parallelism inherent in these algorithms, the 

computational overhead is dramatically increased in terms of execution 

speed. In any case, the overall performance/computational complexity ratio 

is favorable. The distributed version of the non-adaptive algorithm can be 

four orders of magnitude faster than its centralized counterpart. 

 

 
 

Figure 7. Distributed processing architecture of the proposed Multi-Model Partitioning 

algorithms. 

3.3 Structural Reliability and NDE 

Fatigue crack analysis is an essential tool for life prediction and 

maintenance of structural components. Lifetime predictions and in-service 

inspections of each component are used to update the reliability analysis of 

the overall structure. Fatigue crack growth (FCG) monitoring and failure 

prediction are critical in numerous engineering applications especially in any 

rare, expensive, or, dangerous structure that is impossible to test a priori in 

statistically large samples.  

The typical semi-empirical models currently used to describe FCG are 

nonlinear functions of the crack size a, the number of fatigue cycles N, the 

stress intensity factor ΔΚ, and several parameters of the material, the 

component geometry or external conditions (n, C, Y, …)
44

 e.g.: 
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For practical applications it is vitally important to have on-line, real-time 

monitoring and on-line estimation/identification of the FCG, in order to 

obtain earlier and more accurate predictions of remaining lifetime to failure. 

The above FCG equations are written in an integrated form that calculates 

the number of fatigue cycles required for a specific increase of the defect Δa: 
The crack state evolution is usually observed by a Non-Destructive 

Evaluation (NDE) method (microscope, X-rays, ultrasonics, acoustic or 
thermal emissions, etc.) that reports the crack size at every inspection. The 

observation equation of the NDE method is in general nonlinear and with a 

lot of uncertainties. In order to develop an advanced method for FCG 

identification and prediction, Moussas et al.
45

 combined the Crack Growth 
and the Non-Destructive equations in the following nonlinear/parametric 

state-space model form, that is suitable for use by the Multi-Model 

Partitioning techniques.    
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Figure 8. EKF & MMPA average prediction errors over 10 experiments. Three MMPA 

implementations are shown with 3, 7 and 18 filters respectively (MMPA satisfies the 2% error 

limit earlier using less than 20% of the data, EKF crosses the same limit much later using 

more than 50% of the data). 

 

Several implementation of the Multi-Model Partitioning algorithm have 

been developed for FCG model identification, crack growth prediction and 

subsequently, residual lifetime estimation.  

The MMP algorithms are tested against the adaptive EKF with 

augmented state. Both filters use the non-linear state-space representation of 

the same FCG law, and they process real experimental FCG data (a vs. N).  

The results show that both predictors (MMPA & EKF) do converge to 

the actual time to live. However, the MMPA can do it more accurately and 

much sooner than the EKF, thus requiring fewer measurements and leaving 

more time for reaction before a catastrophic failure occurs (figure 8).  

Due to its partitioned structure, the MMPA overcomes easily its 

complexity as it is also suitable for parallel implementation. In addition, the 

MMPA is more robust than any single EKF, as it incorporates the 

mechanism to isolate any diverging sub-filter from its filter bank. 

3.4 Environmental Monitoring 

The remote sensing of atmospheric and oceanic properties in both active 

and passive models has been traditionally limited due to the nature of the 

classical instrumentation available. The insufficient penetration of infrared 

and microwave radiation, especially through the water, has restricted most of 

the oceanic studies to surface characteristics. Among alternate observation 

procedures currently available, the most viable method is that of obtaining 

vertical profiles of radar-like range gated systems utilizing lasers as the 

radiation emitting source. Such laser systems are referred to as LIDAR 

(Laser Integrated Radar). 

3.4.1 LIDAR Signal Processing 

LIDAR systems constitute an engineering problem of great practical 

importance in environmental monitoring sciences. They are usually installed 

and operate from aircraft or space, and they provide indispensable data to 

both oceanographic and climatic studies. LIDAR systems operate near 

appropriate wavelengths and have sufficient penetration of the order of tens 

of meters under favorable conditions.  

Typically, atmospheric parameter estimation has entailed signal 

processing techniques that are based on single-pulse LIDAR returns. The 
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state-variable formulation of the problem and the related linear Kalman filter 

and the nonlinear extended Kalman filter (EKF) have been applied to the 

estimation of the return power and to the logarithm of the return power for 

incoherent backscatter LIDAR, in which multiplicative noise or speckle is 

present. Several drawbacks are usually associated with LIDAR state-variable 

models. The whiteness assumption of the Kalman theory is violated, as the 

multiplicative noise source, seen in the speckle, exhibits serial correlation, 

and, in addition, the same quantity demonstrates non-Gaussian statistics. In 

addition, the environment around the measurement may abruptly introduce 

unknown bias effects in the observation sequence, or, from the system's 

reference point, random failures may suddenly occur. Finally, system 

parameters or part of the signal structure is usually unknown, which requires 

adaptive filter designs for their determination.  

Clearly, signal processing for LIDAR applications involves highly 

nonlinear models and consequently nonlinear filtering; however, optimal 

nonlinear filters are practically unrealizable. The nonlinear state-space 

representation of a possible LIDAR system model, in the presence of both 

additive and multiplicative noise (speckle) and with particular reference to 

estimation of the log-power returns, is presented by the following two-

dimensional form: 

 

1 1 1( 1) ( ) ( )wx k x k w k    (25) 

2 2( 1) 1 ( )x k w k    (26) 

2 1 1( 1) ( 1)exp[ ( 1)] ( 1)zz k x k x k v k       (27) 

 

where, the first state, x1 (k), is the power return and the second, x2 (k), is the 

speckle; w1(k) is a white Gaussian sequence with zero mean and unity 

variance that is scaled to Q1(k) by the unknown parameter Θw; w2(k) is a zero 

mean white Gaussian sequence independent from w1(k), having covariance 

Q2(k); the state return is assumed to arrive corrupted by additive Gaussian 

noise, v(k), with zero mean and covariance R(k); Θz represents an unknown 

parameter to be identified. In meteorological measurements, the strength of 

the additive stochastic disturbance associated with equation (25) is unknown, 

and hence the purpose of the quantity Θw becomes meaningful and effective. 

Expressions (25)-(27) are in a form which permits discrete nonlinear state 

estimation and identification. 

Based on the above model structure, the Lainiotis' Multi-Model 

Partitioning methodology and the related nonlinear and adaptive filtering 

algorithms have been effectively applied to LIDAR signal processing
9,46

. 

The authors defined a vector: Θ = [ Θz  Θw ], that contains all model 

uncertainties. By partitioning the parameter space of vector Θ, they designed 
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a Multi-Model Partitioning algorithm with nonlinear sub-filters that matched 

the different Θ realizations. A state-augmented EKF identifier was also 

designed by including the parameter vector Θ in its state vector.  

 

 
 

Figure 9. Log-Power estimation with multiplicative noise (Mean Square Error vs Time Steps) 

of the Adaptive (augmented) EKF and the Adaptive Lainiotis MMP Filter (ALEF), when 

observation matrix is unknown9. 

 

The resulted Multi-Model Partitioning algorithm found to be very 

effective and significantly superior to the nonlinear extended Kalman filter 

(EKF), which has been the standard nonlinear filter in similar engineering 

applications. Especially when the model is not completely known, while the 

mismatched EKFs develop significant bias errors, the adaptive MMP 

Lainiotis estimator adjusts within a few time steps and eliminates the bias 

error (figure 9). Moreover, it outperforms the state-augmented EKF as the 

latter exhibits a slow adaptation response. 

3.5 Time Series Order Identification 

Time Series (ARMA) models have found great attention in speech 

analysis, biomedical applications, hydrology, electric power systems, 

financial time series prediction and many other areas such as multi-channel 

data analysis, epilepsy research, EEG and ECG analysis, geophysical data 

processing, clutter suppression in airborne radar signal processing, etc. 

A typical multi-variate (MV) AR model of order θ [AR(θ) model] for a 

stationary time series of vectors observed at equally spaced n instants is 

defined as: 
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where the m-dimensional vector vn is uncorrelated random noise vector with 

zero mean and covariance matrix R, and A1,…,Aθ are the (m x m) coefficient 

matrices of the AR model. 

The problem can be described as follows: given a set of samples from a 

discrete time process {y(k), 0 ≤ k ≤ N–1}, it is desired to obtain the set of 

coefficients {Ai} which yields the best linear prediction of y(N) based on all 

past samples: 
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where (N/N–1) denotes the predicted value of y(N) based on the 

measurements up to and including y(N–1). 

It is obvious that the problem is twofold. The first and most important 

task of this problem is the successful determination of the predictor‘s order 

θ. Once this task is completed, one proceeds with the computation of the 

predictor‘s matrix coefficients Ai. 

Determining the order of the process is usually the most delicate and 

crucial part of the problem.  Over the past years substantial literature has 

been produced for this problem and various different criteria, such as 

Akaike‘s, Rissanen‘s, Schwarz‘s, Wax‘s have been proposed to implement 

the order selection process
50

. The above mentioned criteria are not optimal 

and are also known to suffer from deficiencies; for example, Akaike‘s 

information criterion suffers from overfit.  Also their performance depends 

on the assumption that the data are Gaussian and upon asymptotic results.  In 

addition to this, their applicability is justified only for large samples; 

furthermore, they are two pass methods, so they cannot be used in an on line 

or adaptive fashion. 

The Multi-Model Partitioning method for simultaneous order 

identification and parameter estimation proposed by Katsikas
51

, 

Likothanassis and Lainiotis (1990) managed to overcome the above 

deficiencies. They first considered the problem of simultaneous selection of 

the AR model order and of the AR parameters identification for the scalar 

case. The method is based on the well known adaptive Multi-Model 

Partitioning theory, it is not restricted to the Gaussian case, it is applicable to 

on line/adaptive operation and it is computationally efficient. Furthermore, it 

identifies the correct model order very fast.  
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The proposed Multi-Model Partitioning method is also extended for 

simultaneous order identification and parameter estimation of multivariate 

(MV) autoregressive (AR) models
52

. The proposed methods succeed to 

select the correct model order and estimate the parameters accurately in very 

few steps and even with a small sample size. 

Compared to many other well established order selection criteria (figure 

10) , namely Akaike‘s Information Criterion (AIC), Schwarz‘s Bayesian 

Information Criterion (BIC), Hannan‘s and Quinn‘s (H&Q), Brockwell‘s 

and Davis‘ and C. C. Chen, R. A. Davis and P. J. Brockwell order 

determination criteria (DC, MDC), the proposed MMP method requires a 

fraction of the data in order to produce the same or better results
52

.  

 

 
 

Figure 10. The above table52 summarizes the comparison results and shows that: classical 

order selection criteria, as the model order increases, require a larger data set in order to 

achieve a satisfactory performance, while MMPF is consistent and 100% successful for all 

data set sizes.  

 

In addition, the MMPF algorithm is also successful in tracking model 

order changes in real time (figure 11) [52]. 

 



. The Multi-Model Partitioning Theory: Current Trends and Selected 

Applications 

25 

 

 
 

Figure 11. MMPF tracking model order changes in real time (p(θ/k) vs. k) [52]. 

 

A more general approach to the problem is attempted
53

 by applying the 

Evolutionary Multi-Model Partitioning methods discussed in the previous 

Section. The authors combined the Multi-Model Partitioning approach with 

the Genetic Algorithms thus overcoming the difficulties with the initial set of 

candidate filters. Even when the optimal value is not present in the initial 

parameter set, it is eventually produced by the GA that generates new 

possible solutions. The Evolutionary MMP Algorithms applied for order 

identification of ARMA and AR discrete time systems, performed 

significantly better than the conventional MMP approach (figure 12). 
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Figure 12. Evolution of the a-posteriori probabilities of the best genome (Evolutionary 

approach) compared to the conventional Multi-Model approach (MMAF), with model order 

change during operation53. 
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3.5.1 Traffic Pattern and Anomaly Detection 

With the rapid expansion of computer networks, security has become a 

crucial issue. Intrusion Detection Systems (IDS) are being designed to 

protect such critical networked systems. There are two major approaches in 

intrusion detection: anomaly detection and misuse detection. The main 

advantage with anomaly detection is that it can detect new forms of attacks 

or network misuse, as they will probably deviate from the normal behavior.  

The proposed method
54

 uses simple and widely found datasets,  i.e. from 

bandwidth utilization, in order to learn normal network utilization patterns. 

Once a set of known network working conditions is prepared, an adaptive 

Multi-Model Partitioning algorithm is applied to identify the current working 

conditions detect any unusual events. 

The proposed method has two advantages, first, it is based on a powerful 

multi model partitioning algorithm, (MMPA) proposed by Lainiotis , known 

for its stability and well established in identification and modeling, and 

secondly, its observations come from utilization datasets that are easy to find 

and collect. The method initially prepares some Time-Series or State-Space 

models, based on past datasets that will represent various traffic patterns of a 

network connection. 

 

 
 

Figure 13. Test dataset for 1 week (SMTWTFS) containing peaks and failures (up), and, the 

MMPA successful detection of the changes and anomalies in the dataset (down). 
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Subsequently, the adaptive Multi-Model Partitioning algorithm is applied 

to processes the new traffic data received from the network, in order to 

detect deviations (anomalies) from the typical conditions. 

 As shown using real traffic
54

, the MMP algorithm detects correctly all 

changes, failures or unusual activities included in the test datasets. The 

method is also very fast and it can perform equally well off-line and in real-

time. 

3.6 Neural Network Structure Identification 

A continuing question in the research of neural networks is the size of a 

neural network required to solve a specific problem. If the training starts 

with a small network it is possible that no learning is achieved. On the other 

hand, if a larger than required network is used, then the learning process can 

be very slow and/or overfitting may occur. Furthermore, the underlying 

model, that provides the data for the training set, is usually unknown or 

variable, resulting to incomplete driving information. In these cases, no 

standard rules exist, on how one can implement a network which will solve a 

specific problem
55

. 

In the literature, there are several methods reporting how one can face 

this problem, by minimizing the size of the network and yet maintaining 

good performance. One may achieve these design objectives in one of two 

ways: (a) Network growing, where we start with a small network and we add 

a new neuron or a new layer of hidden neurons only when we are unable to 

meet the design specification. (b) Network pruning, in which case we start 

with a large network with an adequate performance for the problem at hand 

and then prune it by weakening or eliminating certain synaptic weights or 

neurons, in a selective and orderly fashion. 

The more significant disadvantage of the above mentioned methods is 

that they demand the a-priori knowledge of the data record (training set), 

thus they are off-line techniques. In real time applications, such as time 

series prediction, the whole measurement set may not be available from the 

beginning. Furthermore, in this case one must know the specific number of 

inputs required to predict the output. In the general case there is not a 

standard procedure to determine the number of the previous inputs (i.e. the 

order of the time series or the number of the network‘s inputs), that is 

necessary to perform ―perfect‖ prediction. Furthermore, these methods can 

not adapt the network size if the underlying model that supports the data, 

change order during the operation so they work under the Gaussian 

assumption. 
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In an attempt to face the above problems an adaptive approach is 

proposed based on the Lainiotis Multi-Model Partitioning theory. The basic 

idea originates from the work performed in
51

 for the problem of Auto 

Regressive model identification with unknown process order, discussed in 

the previous section.  

The method faces the problem as a global non-linear identification 

problem, the solution of which requires the optimization of a certain 

criterion. The solution to this problem is given by a combination of the 

multi-model partitioning theory with a Localized EKF (LEKF). Specifically 

a bank of Kalman filters is realized, each fitting a different order model. 

Each of these filters is implemented as a specific neuron using as training 

algorithm the Localized implementations of the EKF. In sequence, an ALF 

algorithm is realized using a type of neuron, called ALF neuron. It is placed 

in the output layer of a NN and it is connected to M LEKF neurons in the 

hidden layer, representing the bank of the M ‗candidate‘ models. 

The advantage of the proposed method, which integrates in a self-

organized neural network the localized EKF algorithm with the framework 

of multi-model partitioning theory, is that identifies the structure of a 

dynamical system in one-pass, on-line (adaptive) fashion. The resulting 

neural networks are recurrent and adaptive, in the sense that they have the 

ability of tracking successfully the changes in the model structure, in real 

time
56,57

. 
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Figure 14. Structure of the a Self-organized NN for structure identification. 

 

In addition, the MMP method has the powerful characteristic that all 

filters required by ALF interact independently, which makes the method 

amenable for parallel and VLSI implementations. 

A further improvement of this method is presented in
58

 where a more 

general method for optimizing the structure and the weights of a fully 

connected neural network, is developed. Typical Multi-Model Partitioning 

methods depend on the a priori selection of the set of conditional models, 

and they give near optimal solutions when the true order of the model does 

not belong to the initial population of the candidate models. This 

disadvantage is alleviated using natural selection techniques, such as the 

Genetic Algorithms (GAs), which are among the best known methods for 

searching and optimization. As also discussed in Section 2, this new 

evolutionary method combines the effectiveness of the MMP theory with the 

robustness of the GAs. 

4. SUMMARY 

A concise review of the theory underlying the Multi-Model Partitioning 

approach is presented. The Multi-Model Partitioning theory was introduced 

by Lainiotis forty years ago. It has received a great deal of attention due to 

its success in decomposing complex problems into simpler sub-problems, 

and in handling effectively structural or parametric uncertainties. Since then, 

three generations of multi-model partitioning algorithms have appeared and 

numerous applications of the multi-model partitioning approach have been 

developed. A brief survey of selected applications of the approach is also 

presented. 
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