
5th International Conference on Experiments/Process/System Modeling/Simulation/Optimization 
5th IC-EpsMsO 

Athens, 3-6 July, 2013 
© IC-EpsMsO 

 

A HYBRID MODEL FOR WIND SPEED FORECASTING USING ARMA MODELS 
AND SUPPORT VECTOR MACHINES (SVM) 

Stylianos Sp. Pappas1*, Georgios E. Chatzarakis1, Christos C. Pappas2, Vassilios C. Moussas3 
1Department of Electrical Engineering Eduacators Aspete – School of Pedagogical and Technological 

Education N. Heraklion, 141 21 Athens, Greece. 
2University of  Greenwich, School of Engineering, Medway Campus, Pembroke Building, Central Avenue, 

Chatham Maritime, Kent ME4 4TB. 
3School of Technological Applications, Technological Educational Institute of Athens, 122 Ag. Spyridonas St., 

Egaleo 12210, Greece 
  *e-mail: spappas@aegean.gr, ksiroval@otenet.gr  

Keywords: Instructions Wind power, time series prediction, ARMA, Support Vector Machine, Neural 
Networks, Multi-Model Partition Algorithm. 

Abstract. An alternative electric power source, such as wind power, has to be both reliable and autonomous. An 
accurate wind speed forecasting method plays the key role in achieving the aforementioned properties and also 
is a valuable tool in overcoming a variety of economic and technical problems connected to wind power 
production. 
As it is known ARMA (AutoRegressive Moving Average) models have been widely used for linear time series 
forecasting. One of their major disadvantages is the difficulty they have in identifying the non linear 
characteristics of the data. Recenlty, another Neural Network (NN) architecture called Support Vector Machine 
(SVM), was introduced and successfully applied in predicting the behaviour of non linear time series. 
The aim of this work is to combine the benefits of both methods and apply them in order to achieve a reliable 
wind speed forecasting hybrid method. The ARMA model identification and parameter estimation was 
accomplished using the Multi-Model Partition Algorithm (MMPA). The method proposed is based on the 
reformulation of the problem in the standard state space form and on implementing a bank of Kalman filters 
(KF), each fitting an ARMA model of different order. 
Real data were used and real cases were tested based on the measurements of the wind speed provided by Vestas 
Hellas®. The parameters of the wind speed forecasting problem are complex and unique, however their 
appropriate modelling can lead to very promising results. 

1 INTRODUCTION 

Energy is considered amongst the most significant factors that are closely related to both economic and social 
development. It is also a fact that nowadays the majority of the electrical energy production is based on the fossil 
fuels, which on one hand, are without any doubt, highly efficient but on the other are responsible for the emission 
of greenhouse gases and their reserves are limited.  

Consequently renewable sources of energy, such as wind, biomass, solar power, wave power etc, have been 
already adopted for electric power production. It is well known that the wind power generation raises issues of 
reliability due to the fact that the wind speed is significantly and directly affected by various factors such as the 
type of the terrain, the height, season of the year, atmospheric conditions, obstacles present and many more. This 
leads to the conclusion that unless the reliability of the wind power generation is at an acceptable level, wind 
power is not eligible for constant electrical energy supply to the power system. [1, 2]. 

Recent studies have shown that combined forecasting methods can offer robust solutions and can be 
efficiently implemented to various real life problems in diverging fields such as chemical processes, economics, 
load forecasting, tourism demand, environmental issues, medicine and many more [3, 4, 5, 6, 7]. 

In this study a hybrid model is presented, that reveals the advantages of an ARMA and SVM model in wind 
speed modelling and prediction problem. Initially successful model identification and parameter estimation has to 
be performed in order to choose the most appropriate ARMA models.  For tackling this task the well established 
MMPA was used.  This approach was introduced by Lainiotis [8-9] and summarizes the parametric model 
uncertainty into an unknown, finite dimensional parameter vector whose values are assumed to lie within a 
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known set of finite cardinality. A non-exhaustive list of the reformulation, extension and application of the 
MMPA approach as well as its application to a variety of problems can be found in [10-15]. 

In this research real data were used provided by Vestas Hellas® the simulation results appear to be very 
promising. 

2 HYBRID MODEL PRESENTATION 

2.1 ARMA Model 
The problem of fitting an ARMA model in a given time series is present for more than half a century and is 

still appearing in many different fields such as in remote monitoring of civil infrastructure, predicting the demand 
for auto spare parts in China due to the fierce market competition, forecasting equipment failures in order to 
adjust maintenance policies in manufacturing plants, estimating retail sales volumes, predicting the outbreak and 
development of animal infectious diseases and many more [16-17].  

Considering the general case an m-variate (i.e. multivariate) ARMA model of order (p, q) [ARMA (p, q)] for 
a stationary time series of vectors y observed at equally spaced instants k = 1, 2, …,n is defined as: 
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where the m-dimensional vector vk is uncorrelated random noise, not necessarily Gaussian, with zero mean 
and covariance matrix R, θ = (p, q) is the order of the predictor and A1,…,Ap, B1,…,Bq are the m x m coefficient 
matrices of the multivariate (MV) ARMA model. 

It is obvious that the problem requires both the predictor’s order θ = (p, q) determination and computation of 
the predictor’s matrix coefficients {Ai, Bj}. 

The major disadvantage of the ARMA models is that their performance can be limited by any significant data 
non-linearities. 

 
2.2 Multimodel Partition Algorithm (MMPA) 

Due to the fact that the wind speed has not a constant or periodic behaviour, it was noted, by trial and error, 
that not a single ARMA model that was able to describe the whole data set satisfactory. It is actually the 
combination of various ARMA models, each one used for different time intervals and applied for different time 
duration that describes in the best manner the existing data. So instead of having various ARMA models of 
different order θ running in parallel with the SVM it was decided to load all the data to an adaptive filter 
programmed with the MMPA, and it will be the job of that filter to decide which ARMA model will be used each 
time. The work presented in this paper is an extension and combination of the MMPA with SVM, so an 
analytical presentation of the MMPA and all the associated equations are presented in [18].  

2.3 Suuport Vector Machines (SVM) 
In support vector machines, as they were proposed in [19], the training data set , 1,...,d

ix R i N∈ =  is 
mapped into a higher dimensional feature space, via an operator Φ. 
A mathematical representation of the SVM function is: 

                                                                 y = ω·Φ(x) + b  (2) 
where ω and b can be found by the minimization of the following equations: 
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where parameters C and e are user defined. The term hi is the actual wind speed at the time instant j and term 
( )e i iLf h y−  is the loss function. By looking at equation (4) it is obvious that there is any penalty for errors 

below e. The width of the function is given by the term 
21

2
ω  and finally the training error term is given by 
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error. For dealing with non linear cases, like wind speed data, one may introduce slack variables ξ and ξ* into 
equation (2 ) such that : 

                                                               ω·Φ(j) + bj – hj ≤ e + *
jξ                                                               (5) 

     -( ω·Φ(j) + bj )+ hj ≤ e + ξj                                                                                                (6) 
where *, 0,j jξ ξ ≥  and j = 1,2,…M. 
    By considering the above slack variables and in order to include any extra cost of the training errors, 

equation (3) which represents the objective function to be minimized is rearranged to: 
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where again C* is user defined and is the trade off between the maximum margin defined by ω  and the 

minimum training error as defined by *

1
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    Finally by introducing positive Lagranian multipliers and maximizing equation (7) the latter equation is 
reformed to: 
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where j = 1,2,…M . 
The Lagranian multipliers *,j ja a , satisfy ** 0j ja a =  and also 
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    The Kernel function ( )iK x x−  introduced in equation (10) is defined such that 

( )j i i jK x x Φ(x )·Φ(x )− =  , meaning that its value is equal to the inner product of the vectors xi and xj, 
included in the featured space Φ(xi) and Φ(xj). 

In this study the Gaussian Kernel function (11), also known as Radial Basis Function (RBF), is used.  
2
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    The most significant feature of the SVM compared to other similar algorithms is that they manage to 
achieve optimum performance by restricting the decision’s function complexity so that is the most suitable 
according to the quantity of the data present.  

 

2.4 The hybrid model 
In The wind speed behaviour is unpredictable and it is difficult to be represented. This is the reason for 

combining two different techniques for modelling the linear and the non-linear part of the series. The hybrid 
model proposed is based on a linear pattern, L(t) produced by the MMPA and a non-linear one, NL(t) produced 
by the SVM. It can be represented as: 

Q(t) = L(t) + NL(t)                                                                          (12) 
Both parts are directly calculated from the wind speed time series.  
If e(t) is the MMPA estimation error at any time instant t, then 

e(t) = Z(t) - ( )L t                                                                               (13) 
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It is now the SVM that models these residuals as 
e(t) = f (e(t-1), e(t-2),…, e(t-n)) + Δt                                                                   (14) 

where f is non linear and Δt is random error. It is obvious that  ( )NL t  is the forecast of (14). 
Consequently the forecast of the hybrid model is 

( ) ( ) ( )Q t L t NL t= +                                                                            (15) 

 support vector machines, as they were proposed in [25], the training data set , 1,...,d
ix R i N∈ =  is 

mapped into a higher dimensional feature space, via an operator Φ. Figure 1 shows a schematic representation of 
the hybrid model. 

3 RESULTS 

In this method the weighted average of the estimates produced by the elemental ARMA filters were used as a 
data pre-processor in order to detect the data’s linearities. This was succeeded using a bank of 10 Kalman filters 
of order (1,1), (2,2), (3,3), …,(10,10) programmed with the MMPA. Then the MMPA’s estimation error was 
applied as input to the SVM that were able to achieve a further error reduction and come up with a better 
forecasting outcome. As far as the SVM are concerned the three parameters (C, σ, e) had to be carefully adjusted. 
Unsuitable values for these parameters may lead to either over fitting or under fitting of the training data. The 
values used in this research were C = 35, σ = 2.5 and e = 0.6.  

This research was conducted based on the hour average of daily wind speed recorded by the Vestas Hellas 
from December 2010 up to February 2011. The obtained time series did not follow any periodic pattern and it 
was also presenting irregular amplitudes, making it hard to both model and predict (Figures 2-4 “Raw” data). 

The aim of this work is to generate a single-step prediction based on past observations. The data were 
normalized to take values from zero to one, before using them as input data to the hybrid model.  

From the available data points, 744 were for December, 744 for January and 517 for February. For each 
month 20% of the available data was used for training, 20% for validation and 60% for testing.  

The performance of the hybrid method is judged by (a) comparing the predicted and the observed (raw) wind 
time series, Figures 2-4, (b) drawing scatter diagrams of the predicted and the observed sequences, Figures 5-7 
and (c) by computing the mean percentage absolute error (MAPE) for the testing data set, using the mathematical 
formula given in Eq. 16. Table 1 summarizes the results. 
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Figure 1. Schematic Representation of the Hybrid Model 
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               Figure 2. December 2010                                                                  Figure 3. January 2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Figure 4. February 2011                                                      Figure 5. Dec 2010: Scatter of predicted and 
                                                                                                                     observed wind speed time series 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Jan 2011: Scatter of predicted and                                Figure 7. Jan 2011: Scatter of predicted and 
  observed wind speed time series                                                             observed wind speed time series 
 
 

Month MAPE % R2 

December 3.27 0.8533 

January 3.19 0.8635 

February 3.02 0.8758 

   

Average 3.01 0.8685 

Table 1. Example of the construction of a table 
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4 CONCLUSIONS 

 
The area of forecasting is very demanding and is over than 50 years that ARMA models were exclusively 

used for tackling real life problems. Recently ANN were applied in difficult prediction problems showing very 
satisfactory results especially due to their ability of manipulating the non linearities of the data set. The aim of 
this work was not to just add yet another technique of wind speed prediction but to actually validate the fact that 
different forecasting methods fulfil each other and lead to accurate results. As it was shown the performance of 
the hybrid method proposed was satisfactory with an average error of 3.01% which can be considered quite small 
for wind speed forecasting. Future work can include adjustments for wind speed prediction for time intervals 
smaller than 1 hour, say ten minutes intervals and also for on-line wind speed prediction. 
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