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Abstract. An adaptive method for simultaneous order estimation 
and parameter identification of Multivariate (MV) ARMA models 
under the presence of noise is addressed. The proposed method is 
based on the well known multi-model partitioning (MMP) theory. 
Computer simulations indicate that the method is 100% successful 
in selecting the correct model order in very few steps. The results 
are compared with two other established order selection criteria 
namely Akaike’s Information Criterion (AIC) and Schwarz’s Bayes-
ian Information Criterion (BIC). 
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5.1 Introduction 

The problem of fitting a multivariate ARMA model to a given time series 
is an essential one in speech analysis, biomedical applications, hydrology, 
electric power systems and many more [1-4]. 

In this paper, a new method for multivariate ARMA model order selec-
tion and parameter identification is presented, as an extension to the one 
proposed in [5] for MV AR models. The method is based on the well 
known adaptive multimodel partitioning theory [6,7], it is not restricted to 
the Gaussian case, it is applicable to on line/adaptive operation and it is 
computationally efficient. Furthermore, it identifies the correct model or-
der very fast. 

An m-variate ARMA model of order (p, q) [ARMA (p, q)] for a station-
ary time series of vectors y observed at equally spaced instants k = 1, 2, …, 
n is defined as: 
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where the m-dimensional vector vk is uncorrelated random noise, not nec-
essarily Gaussian, with zero mean and covariance matrix R, θ = (p, q) is 
the order of the predictor and A1,…,Ap, B1,…,Bq are the m x m coefficient 
matrices of the MV ARMA model. 

It is obvious that the problem is twofold. The first task, which is the 
most important for the problem under consideration, is the successful de-
termination of the predictor’s order θ = (p, q). Once the model order selec-
tion task is completed, one proceeds with the second task, i.e. the computa-
tion of the predictor’s matrix coefficients {Ai, Bj } 

Determining the order of the ARMA process is usually the most delicate 
and crucial part of the problem. Over the past years substantial literature 
has been produced for this problem and various different criteria, such as 
Akaike’s [8], Rissanen’s [9,10], Schwarz’s [11], Wax’s [12] have been 
proposed to implement the order selection process. 

The above mentioned criteria are not optimal and are also known to suf-
fer from deficiencies; for example, Akaike’s information criterion suffers 
from overfit [13]. Also their performance depends on the assumption that 
the data are Gaussian and upon asymptotic results. In addition to this, their 
applicability is justified only for large samples; furthermore, they are two 
pass methods, so they cannot be used in an on line or adaptive fashion. 

The paper is organized as follows. In Section 5.2 the MV ARMA model 
order selection problem is reformulated so that it can be fitted into the state 
space under uncertainty estimation problem framework. In the same sec-



tion the multi-model partitioning filter (MMPF) is briefly described and its 
application to the specific problem is discussed. In Section 5.3, simulation 
examples are presented which demonstrate the performance of our method 
in comparison to previously reported ones. Finally, Section 5.4 summa-
rizes the conclusions. 

5.2 Problem reformulation 

If we assume that the model order fitting the data is known and is equal to 
θ = (p, q), we can rewrite equation (5.1) in standard state-space form as: 

( 1) ( )x xk + k=  (5.2)

( ) ( ) ( ) ( )k k k k= +y H x v  (5.3)

where x(k) is an m2(p+q)×1 vector made up from the coefficients of the 
matrices {A1, ..., Αp, B1, ..., Bq }, and H(k) is an m×m2(p+q) observation 
history matrix of the process {y(k)} up to time k-(p+q). 

Assuming that the general form of the matrix  

Ap is 
...p p

11 1m

p p
m1 mm

a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M O M

L

 and 

Bq is
...q q

11 1m

q q
m1 mm

b b

b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M O M

L

 then 

( ) [

]

1 1 1 1 1 1 1 p
11 21 m1 12 22 m2 mm mm

1 1 1 1 1 1 1 q
11 21 m1 12 22 m2 mm mm

k

b b b b b b b b Τ

α α α α α α α α� L M L ML ML M

L M L ML ML

x
 

1 1

1 1

( ) [ ( -1) ( -1) ( ) ( - )
( -1) ( -1) ( ) ( - ) ]

m m

m m

k y k I y k I y k p I y k p I
v k I v k I v k q I v k q I 

−

−

� L MLM L M

L MLM L

H  

where I is the m × m identity matrix and θ = (p, q), is the model order. 
If the system model and its statistics were completely known, the Kal-

man filter (KF) in its various forms would be the optimal estimator in the 
minimum variance sense. 

In the case where the prediction coefficients are subject to random per-
turbations (5.2), becomes 



( 1) ( ) ( )k k k+ = +x x w  (5.4)

v(k), w(k) are independent, zero–mean, white processes, not necessarily 
Gaussian. 
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A complete system description requires the value assignments of the va-
riances of the random processes w(k) and v(k). We adopt the usual as-
sumption that w(k) and v(k) at least wide sense stationary processes, hence 
their variances, Q and R respectively are time invariant. Obtaining these 
values is not always trivial. If Q and R are not known they can be esti-
mated by using a method such as the one described in [14]. In the case of 
coefficients constant in time, or slowly varying, Q is assumed to be zero 
(just like in equation (5.4)). 

It is also necessary to assume an a priori mean and variance for each 
{Ai, Bi }. The a priori mean of the Ai(0)’s and Bi(0)’s can be set to zero if 
no knowledge about their values is available before any measurements are 
taken (the most likely case). On the other hand the usual choice of the ini-
tial variance of the Ai’s and Bi’s, denoted by P0 is P0 = nI, where n is a 
large integer. 

Let us now consider the case where the system model is not completely 
known Τhe adaptive multi-model partitioning filter (MMPF) is one of the 
most widely used approaches for similar problems. This approach was in-
troduced by Lainiotis in [6, 7] and summarizes the parametric model un-
certainty into an unknown, finite dimensional parameter vector whose val-
ues are assumed to lie within a known set of finite cardinality. A non - 
exhaustive list of the reformulation, extension and application of the 
MMPF approach as well as its application to a variety of problems by 
many authors can be found in [15] and [16-19]. In our problem assume 
that the model uncertainty is the lack of knowledge of the model order θ. 
Let us further assume that the model order θ lies within a known set of fi-
nite cardinality: 1 ≤  θ ≤  M, where θ = (p, q), is the model order. 

The MMPF operates on the following discrete model: 

( 1) ( 1 ) ( ) ( )x F x wk + k + ,k / θ k k= +  (5.5) 

( ) ( / ) ( ) ( )y H x vk k θ k k= +  (5.6) 

where θ = (p, q) is the unknown parameter, the model order in this case. A 
block diagram of the MMPF is presented in Figure 5.1. 



 
Fig. 5.1. MMPF Block Diagram 

In the Gaussian case the optimal MMSE estimate of x(k) is given by 
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A finite set of models is designed, each matching one value of the pa-
rameter vector. If the prior probabilities p(θj / k) for each model are already 
known, these are assigned to each model. In the absence of any prior 
knowledge, these are set to j

1p(θ /k)= M  where M is the cardinality of 

the model set. 
A bank of conventional elemental filters (non adaptive, e.g Kalman) is 

then applied, one for each model, which can be run in parallel. At each it-
eration the MMPF selects the model which corresponds to the maximum 
posteriori probability as the correct one. This probability tends to one, 
while the others tend to zero. The overall optimal estimate can be taken ei-
ther to be the individual estimate of the elemental filter exhibiting the 



highest posterior probability, called the maximum a posteriory (MAP) es-
timate , in [20], which is the case used in this paper, or the weighted aver-
age of the estimates produced by the elemental filters, as described in equ-
ation (5.7). The weights are determined by the posterior probability that 
each model in the model set is in fact the true model. 

The posterior probabilities are calculated on-line in a recursive manner 
as follows 

j
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(5.9)

where the innovation process 

% $( ) ( ) ( ; ) ( )y y H xj j jk/k -1; k k k/k - 1;θ θ θ= −  (5.10)

is a zero mean white process with covariance matrix 

% ( ) ( ) ( ) ( )TP H P H Rj j j jy k/k -1; k; k/k; k;θ θ θ θ= +  (5.11)

For equations (5.8) – (5.11) j = 1,2, …, M. 
An important feature of the MMPF is that all the Kalman filters needed 

to implement can be independently realized. This enables us to implement 
them in parallel, thus saving us enormous computational time [20]. 

Equations (5.7), (5.8) refer to our case where the sample space is natu-
rally discrete. However in real world applications, θ’s probability density 
function (pdf) is continuous and an infinite number of Kalman filters have 
to be applied for the exact realization of the optimal estimator. The usual 
approximation considered to overcome this difficulty is to somehow ap-
proximate θ’s pdf by a finite sum. Many discretization strategies have been 
proposed at times and some of them are presented in [21-22]. 

When the true parameter value lies outside the assumed sample space, 
the adaptive estimator converges to the value that in the sample space 
which is closer (i.e. minimizes the Kullback Information Measure) to the 
true value, [23]. This means that the value of the unknown parameter can-
not be exactly defined. The application of a variable structure MMPF is 
able to overcome this difficulty [17]. 



5.3 Examples 

In order to assess the performance of our method, several simulation ex-
periments were conducted. All of these experiments were conducted 100 
times (100 Monte Carlo Runs). The models used was that of (5.2) and 
(5.3), with cardinality M = 10. 

5.3.1 Example 1 

ARMA (1, 1).  θ = (1, 1) = 2. 

A= 
-0.85 0.75
0.65 -0.55

⎡ ⎤
⎢ ⎥
⎣ ⎦

 B= 
-1.9833 1.889

1.7 1.9833
⎡ ⎤
⎢ ⎥
⎣ ⎦

R = 
1.5625 1.5

1.5 1.5625
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Figure 5.2 depicts the posterior probabilities associated with each value 
of θ. Figure 5.3 shows the criteria comparison for two data sets, one rela-
tively small (50 samples) and one larger (100 samples) and Table 5.1 
shows the estimated ARMA parameter coefficients. 

From Figure 5.2, is obvious that the MMPF identifies the correct θ = (1, 
1) = 2 very fast, in just 17 steps. Convergence is taken to occur when the 
posterior probability of the model exceeds 0.9. 

From Figure 5.3 we deduce that MMPF is 100% successful in selecting 
the correct model order for both data sets, while only BIC matches its per-
formance for the larger data set. 

Also Table 5.1 shows that the parameter coefficient estimation is very 
accurate.(RMSE – Root Mean Square Error is very small). 

5.3.2 Example 2 

ARMA (1, 1).  θ = (1, 1) = 2. This is a more complex MV ARMA since m 
= 3 

A= 
0.2 0.23

0.15 0.18 0.16
0.17 0.24 0.21

1⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  B= 
1 0.15 0.09

0.1 0.1 0.05
0.05 0.13 0.075

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

R = diag [(0.42, 0.01, 0.16)]. 

Figure 5.4 depicts the posterior probabilities associated with each value 
of θ. Figure 5.5 shows the criteria comparison for two data sets, one rela-
tively small (50 samples) and one larger (100 samples) and Table 5.2 
shows the estimated ARMA parameter coefficients. 



From Figure 5.4, is obvious that the MMPF identifies the correct θ = (1, 
1) = 2 very fast, in just 18 steps. Convergence is taken to occur when the 
posterior probability of the model exceeds 0.9. 

From Figure 5.5 we deduce that MMPF is 100% successful in selecting 
the correct model order for both data sets, while none of the two other cri-
teria achieve a similar performance for either data set. 

As Table 5.2, clearly shows the parameter estimation is again accurate 
since the Root Mean Square Error (RMSE) is very small. 

5.3.3 Example 3 

ARMA (2, 2).  θ = (2, 2) = 4. 

A1= 
0.17 0.14
0.19 0.1

−⎡ ⎤
⎢ ⎥− −⎣ ⎦

, A2= 
0.2 0.12

0.22 0.25
−⎡ ⎤
⎢ ⎥−⎣ ⎦

  

B1= 
0.45 0.52
0.32 0.7
−⎡ ⎤
⎢ ⎥− −⎣ ⎦

, B2= 
0.85 0.75
0.65 0.55
−⎡ ⎤
⎢ ⎥− −⎣ ⎦

,  

R = 
1 -0.08

-0.08 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Figure 5.6 depicts the posterior probabilities associated with each value 
of θ. Figure 5.7 shows the criteria comparison for two data sets, one rela-
tively small (50 samples) and one larger (100 samples) and Table 5.3 
shows the estimated ARMA parameter coefficients. 

From Figure 5.6, is obvious that the MMPF identifies the correct θ = (1, 
1) = 2 very fast, in just 24 steps. Convergence is taken to occur when the 
posterior probability of the model exceeds 0.9. 

From Figure 5.7 we deduce that MMPF is 100% successful in selecting 
the correct model order for both data sets, only BIC matches its perform-
ance for the larger data set. 

As Table 5.3, clearly shows the parameter estimation is again accurate 
since the Root Mean Square Error (RMSE) is very small. 

5.4 Conclusions 

A new method for simultaneously selecting the order and for estimating 
the parameters of a MV ARMA model has been developed, as an exten-
sion of the method proposed for the MV AR case. The proposed method 
successfully selects the correct model order in very few steps and identifies 



very accurately the ARMA parameters. Comparison with other established 
order selection criteria (AIC, BIC) show that the proposed method only 
needs the shortest data set for successful order identification and accurate 
parameter estimation for all the simulated models, whereas the other crite-
ria require longer data sets as the model order increases. The method per-
forms equally well when the complexity of the MV ARMA model is in-
creased. 

 
Fig. 5.2. Example 1, posterior probabilities 
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Fig. 5.3. Example 1, Criteria Comparison– Correct model order identification 



 
Fig. 5.4. Example 2, posterior probabilities 
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Fig. 5.5. Example 2, Criteria Comparison– Correct model order identification 



 
Fig. 5.6. Example 3, posterior probabilities 
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Fig. 5.7. Example 2, Criteria Comparison– Correct model order identification 



Table 5.1. Example 1, Estimated ARMA coefficient parameters  

Estimated Parameters RMS Error 
-0.8499 0.0033 
0.6508 0.0036 
0.7501 0.0040 
0.5501 0.0032 

-1.9823 0.0092 
1.7011 0.0064 
1.8891 0.0074 
1.9831 0.0057 

Table 5.2. Example 2, Estimated ARMA coefficient parameters 

Estimated Parameters RMS Error 
0.9932 1.0217 0.0152 0.0026 
0.2023 0.1516 0.0035 0.0016 
0.2310 0.0894 0.0021 0.0059 
0.1519 0.1013 0.0143 0.0023 
0.1829 -0.1027 0.0091 -0.0127 
0.1612 0.0059 0.0044 0.0019 
0.1702 -0.0048 0.0030 0.0017 
0.2408 0.1351 0.0371 0.0046 
0.2143 0.0742 0.0045 0.0028 

Table 5.3. Example 3, Estimated ARMA coefficient parameters 

Estimated Parameters RMS Error 
-0.1691 -0.4535 0.0047 0.0094 
-0.1896 -0.3260 0.0054 0.0109 
0.1458 0.5244 0.0137 0.0090 

-0.0899 -0.6931 0.0161 0.0108 
-0.1982 -0.8441 0.0064 0.0122 
0.2234 -0.6407 0.0073 0.0147 
0.1154 0.7508 0.0094 0.0086 

-0.2573 -0.5471 0.0114 0.0094 

Acknowledgment. This paper is dedicated to the memory of Prof. Dimit-
rios G. Lainiotis, the founder of the multi-model partitioning theory, who 
suddenly passed away on 2006. 
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