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Abstract: In this paper a study on how to perform simultaneous order and parameter 
estimation of Multivariate (MV) ARMA (AutoRegressive Moving Average) models under 
the presence of noise is addressed.  The proposed method, which is computationally 
efficient, is an extension of a previously presented method for MV AR models and is based 
on the well established and widely applied multi-model partitioning theory. A series of 
computer simulations indicate that the method is infallible in selecting the correct model 
order in very few steps. The simultaneous estimation of the Multivariate ARMA parameters 
is also another benefit of the proposed method.  The results are compared with two other 
established order selection criteria namely Akaike’s Information Crieterion (AIC) and 
Schwarz’s Bayesian Information Criterion (BIC).  Finally, it is shown that the method is 
also successful in tracking model order changes, in real time.   
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1 INTRODUCTION 

The problem of fitting a Multivariate (MV) ARMA model 
to a given time series arises in a large variety of 
applications, such as speech analysis (Chen et al. 2007), 
biomedical applications (Sheng Lu et al. 2001), hydrology 
(Kourosh et al. 2006), electric power systems (Derk et al. 
2007), simulating earthquake ground motions (Mobarakeh 
et al. 2002), effective multi-channel identification of 
structures under unobservable excitation (Papakos and 
Fassois, 2003) and many more. 

The aim of this paper is not to add yet another ARMA 
model selection criterion to the rich literature in this area. 
Rather we focus on an extension to the model order 
selection criterion proposed for MV AR models by 
Pappas, Leros and Katsikas (2006).  The method is based 
on the well known adaptive multimodel partitioning 
theory (Lainiotis 1976a, 1976b, 1971), it is not restricted 
to the Gaussian case, it is applicable to on line/adaptive 
operation and it is computationally efficient.  Furthermore, 
it identifies the correct model order and parameters very 
fast. 

An m-variate ARMA model of order (p, q) [ARMA (p, 
q)] for a stationary time series of vectors y observed at 
equally spaced instants k = 1, 2, …, n is defined as: 
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where the m-dimensional vector vk is uncorrelated random 
noise, not necessarily Gaussian, with zero mean and 
covariance matrix R, θ = (p, q) is the order of the predictor 
and A1,…,Ap, B1,…,Bq are the m x m coefficient matrices 
of the MV ARMA model. 

It is obvious that the problem is twofold. The first task is 
the successful determination of the predictor’s order θ = 
(p, q). Once the model order selection task is completed, 
one proceeds with the second task, i.e. the computation of 
the predictor’s matrix coefficients {Ai, Bj }  

Determining the order of the ARMA process is usually 
the most delicate and crucial part of the problem.  Over 
the past years substantial literature has been produced for 
this problem and various different information theoretic 
criteria, such as Akaike’s (1969, 1973, 1974), Rissanen’s 
(1978, 1986), Schwarz’s (1978), Wax’s (1988) have been 
proposed to implement the order selection process. 

Akaike’s and Schwarz’s classical order selection 

procedures are based on the minimization of an objective 
function of the form  

Akaike (AIC): AIC (m) = ( )2
,log 2e mn m+σ  (2.12) 

Schwarz (BIC): BIC (m) = ( )2
,log ln( )e mn m n+σ  (2.13) 

where n is the sample size, m is the number of 

parameters and $
2
e,mσ  is the estimated residual variance.   

The criteria may be minimized over choices of m to form 
a tradeoff between the fit of the model (which lowers the 
sum of squared residuals) and the model’s complexity, 
which is measured by m.  Increasing the number of free 
parameters to be estimated improves the goodness of fit, 
regardless of the number of free parameters in the data 
generating process. Hence AIC and BIC not only reward 
goodness of fit, but also include a penalty that is an 
increasing function of the number of estimated 
parameters. This penalty discourages overfitting. The 
preferred model is the one with the lowest AIC or BIC 
value. The AIC and BIC methodology attempts to find the 
model that best explains the data with a minimum of free 
parameters.  

The above mentioned criteria are not optimal and are 
also known to suffer from deficiencies; for example, 
Akaike’s information criterion (1969) suffers from overfit 
(Lutkepohl 1985).  Also their performance depends on the 
assumption that the data are Gaussian and upon 
asymptotic results.  In addition to this, their applicability is 
justified only for large samples; furthermore, they are two 
pass methods, so they cannot be used in an on line or 
adaptive fashion. 

In addition to the previous criteria one can mention 
graphic methods for ARMA order identification based on 
the autocorrelation and partial autocorrelation functions 
such as ACF and PACF (Box et al., 1994). 

The paper is organized as follows. In Section 2 the MV 
ARMA model order selection problem is reformulated so 
that it can be fitted into the state space under uncertainty 
estimation problem framework. In the same section the 
multi-model partitioning filter (MMPF) is briefly 
described and its application to the specific problem is 
discussed. In Section 3, simulation examples are presented 
which demonstrate the performance of our method in 
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comparison to previously reported ones. Finally, Section 4 
summarizes the conclusions. 

2 PROBLEM REFORMULATION 

In (Katsikas, Likothanassis and Lainiotis 1990) the 
problem of simultaneously identifying the order and 
estimating the parameters of a univariate AR model was 
reformulated in a state-space form. This work was then 
extended to univariate ARMA models in (Likothanassis, 
Demiris, Karelis, 1997), multivariate ARX models in 
(Demiris, Likothanassis, Katsikas 1998) and to 
multivariate AR models in (Pappas, Leros and Katsikas 
2006). Herein, the approach is extended to cover 
multivariate ARMA models.  

If we assume that the model order fitting the data is 
known and is equal to θ = (p, q), we can rewrite equation 
(1.1) in standard state-space form as:  

( 1) ( )k + k=x x      (2.1) 

( ) ( ) ( ) ( )k k k k= +y H x v     (2.2) 

where x(k) is an m2 (p + q) × 1 vector made up from the 
coefficients of the matrices {A1, ..., Αp, B1, ..., Bq }, and 
H(k) is an m × m2 (p + q) observation history matrix of the 
process {y(k)} up to time k - (p + q). 

Assuming that the general form of the matrix Ap is: 
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where I is the m × m identity matrix and θ = (p, q), is the 
model order. 

If the system model and its statistics were completely 
known, the Kalman filter (KF) in its various forms would 
be the optimal estimator in the minimum variance sense. 

Remarks 
1) In the case where the prediction coefficients are 

subject to random perturbations (2.1) becomes 
( 1) ( ) ( )k k k+ = +x x w  (2.3) 
( ) [

]

1 1 1 1 1 1 1 p
11 21 m1 12 22 m2 mm mm
1 1 1 1 1 1 1 q
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k w w w w w w w w

w w w w w w w w Τ
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w  (2.4) 

v(k), w(k) are independent, zero–mean, white processes, 
not necessarily Gaussian. 

2) A complete system description requires the value 
assignments of the variances of the random processes w(k) 
and v(k).  We adopt the usual assumption that w(k) and 
v(k) are at least wide sense stationary processes, hence 
their variances, Q and R respectively are time invariant. 
Obtaining these values is not always trivial. If Q and R are 
not known they can be estimated by using a method such 
as the one described by Sage and Husa (1969). 

In the case of coefficients constant in time, or slowly 
varying, Q is assumed to be zero (just like in equation 
(2.1)).  

3) It is also necessary to assume an a priori mean and 
variance for each {Ai, Bi}. The a priori mean of the Ai(0)’s 
and Bi(0)’s can be set to zero if no knowledge about their 
values is available before any measurements are taken (the 
most likely case). On the other hand the usual choice of 
the initial variance of the Ai’s and Bi’s, denoted by P0 is P0 
= nI, where n is a large integer. 

Let us now consider the case where the system model is 
not completely known. Τhe adaptive multimodel 
partitioning filter (MMPF) is one of the most widely used 
approaches for similar problems.  This approach was 
introduced by Lainiotis (1971, 1976a, 1976b) and 
summarizes the parametric model uncertainty into an 
unknown, finite dimensional parameter vector whose 
values are assumed to lie within a known set of finite 
cardinality. In our problem assume that the model 
uncertainty is the lack of knowledge of the model order θ. 
Let us further assume that the model order θ lies within a 
known sample space of finite cardinality, i.e. that 1≤ θ ≤ 
M, θ∈ℑ, where ℑ denotes the set of integers. 

The MMPF operates on the following discrete-time 
model: 

( 1) ( 1 ) ( ) ( )k + k + ,k / θ k k= +x F x w  (2.5) 
( ) ( / ) ( ) ( )k k θ k k= +y H x v  (2.6) 

where θ is the unknown parameter - the model order in 
this case- F is the state transition matrix and w(k) is 
independent, zero mean, white noise not necessarily 
Gaussian with covariance Q which is usually set to a small 
positive non zero constant. The optimal MMSE 
(Minimum Mean Square Error) estimate of x(k) is given 
by 

ˆ ˆ( / ) ( / ; ) ( / )
M

j j
j 1

k k k k p k
=

= θ θ∑x x  (2.7) 

A finite set of models is designed, each matching one 
value of the parameter vector.  If the prior probabilities 
p(θj / k) for each model are already known, these are 
assigned to each model. In the absence of any prior 
knowledge, these are set to p(θj / k) = 1/M, where M is the 
cardinality of the  
model set.   

A bank of conventional elemental filters (non adaptive, 
e.g. Kalman) is then applied, one for each model, which 
can be run in parallel.  At each iteration the MMPF selects 
the model which corresponds to the maximum posterior 
probability as the correct one.  This probability tends to 
one, while the others tend to zero.  The overall optimal 
estimate can be taken either to be the individual estimate 
of the elemental filter exhibiting the maximum posterior 
probability (MAP) (Lainiotis et al 1988), which is the case 
used in this paper, or the weighted average of the 
estimates produced by the elemental filters, as described in 
Eq (2.7).  The weights are determined by the posterior 
probability that each model in the model set is in fact the 
true model.   
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The probabilities are calculated on – line in a recursive 
manner as it is shown by equations (2.8) and (2.9).  

j
j jM

j j
j=1

L(k/k;θ )
p(θ /k)= p(θ /k-1)

L(k/k;θ ) p(θ /k-1)∑
 (2.8)  
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%
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1exp[ ( ) ( )]
2

j j

T
j j j

L k/k;θ k/k - 1;θ

k/k - 1;θ k/k - 1;θ k/k - 1;θ

−
= ⋅

−

y

-1
y

P ( )

y P ( )y

 (2.9)  

where the innovation process 
% $( ) ( ) ( ; ) ( )j j jk/k - 1; k k k/k - 1;= −y y H xθ θ θ  (2.10) 
is a zero mean white process with covariance matrix 
% ( ) ( ) ( ) ( )j j j jy k/k -1; k; k/k; k;= +TP H P H Rθ θ θ θ  (2.11) 

For equations (2.8) – (2.11) j = 1,2, …, M. 
 

3 EXAMPLES 

In order to assess the performance of our method, several 
simulation experiments were conducted.  All of these 
experiments were conducted for 100 Monte Carlo Runs.  
For details for the application of stochastic Monte Carlo 
techniques see Shiryaev (1996) or Christakis (1998).  The 
models used were those of (2.1) and (2.2), with cardinality 
M= 10.   

Example 1.  ARMA (1, 1).  θ = (1, 1) = 2.  
and cardinality M = 10. 

A1= 
-0.85 0.75
0.65 -0.55

⎡ ⎤
⎢ ⎥
⎣ ⎦

, B1= 
-1.9833 1.889

1.7 1.9833
⎡ ⎤
⎢ ⎥
⎣ ⎦

,  

R= 
1.5625 1.5

1.5 1.5625
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Figure 2 depicts the posterior probabilities associated 
with each value of θ plotted against normalised time 
intervals.  Figure 3 shows the criteria comparison for two 
data sets, one relatively small (50 samples) and one larger 
(100 samples); and Table 1 shows the estimated ARMA 
parameter coefficients. 

From Figure 2, is obvious that the MMPF identifies the 
correct probability θ = (1, 1) = 2 very fast, in just 17 steps.  
Convergence is taken to occur when the posterior 
probability of the model exceeds 0.9. 

From Figure 3 we deduce that MMPF is 100% 
successful in selecting the correct model order for both 
data sets, while only BIC matches its performance for the 
larger data set. 

Also Table 1, shows that the parameter coefficient 
estimation is very accurate to the considered amount of 
noise.(RMSE – Root Mean Square Error is very small). 

Example 2  ARMA (1, 1).  θ = (1, 1) = 2.  This is a 
more complex MV ARMA since m = 3. 

A1= 
1 0.2 0.23

0.15 0.18 0.16
0.17 0.24 0.21

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, B1= 
1 0.15 0.09

0.1 0.1 0.05
0.05 0.13 0.075

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

R= diag [(0.42, 0.01, 0.16)]. 

Figure 4 depicts the posterior probabilities associated 
with each value of θ plotted against normalised time 
intervals.  Figure 5 shows the criteria comparison for two 
data sets, one relatively small (50 samples) and one larger 
(100 samples); and Table 2 shows the estimated ARMA 
parameter coefficients. 

MMPF identifies the correct probability θ = (1, 1) = 2 
very fast, in just 18 steps (Figure 4).  Convergence is 
taken to occur when the posterior probability of the model 
exceeds 0.9.  Moreover only MMPF is 100% successful in 
selecting the correct model order for both data sets (Figure 
5). 

Example 3  ARMA (2, 2).  θ = (2, 2) = 4. 

A1= 
0.17 0.14
0.19 0.1

−⎡ ⎤
⎢ ⎥− −⎣ ⎦

, A2= 
0.2 0.12

0.22 0.25
−⎡ ⎤
⎢ ⎥−⎣ ⎦

,  

B1= 
0.45 0.52
0.32 0.7
−⎡ ⎤
⎢ ⎥− −⎣ ⎦

, B2= 
0.85 0.75
0.65 0.55
−⎡ ⎤
⎢ ⎥− −⎣ ⎦

,  

R= 
1 -0.08

-0.08 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

Figure 6 depicts the posterior probabilities associated 
with each value of θ plotted against normalised time 
intervals.  Figure 7 shows the criteria comparison for two 
data sets, one relatively small (50 samples) and one larger 
(100 samples) and Table 3 shows the estimated ARMA 
parameter coefficients. 

From Figure 6, is obvious that the MMPF identifies the 
correct probability θ = (2, 2) = 4 very fast, in just 24 steps.  
Convergence is taken to occur when the posterior 
probability of the model exceeds 0.9. 

From Figure 7 we deduce that MMPF is 100% 
successful in selecting the correct model order for both 
data sets, only BIC matches its performance for the larger 
data set. 

As Table 3, clearly shows the parameter estimation is 
again accurate since the Root Mean Square Error (RMSE) 
is very small. 

Example 4: The aim of this example is to show that the 
proposed method is able to track changes in the model 
structure in real time, and thus, the method should handle 
successfully the problem of the time varying model order.  
At each iteration, the proposed algorithm selects the model 
that corresponds to the maximum a posteriori probability 
as the correct one.  This probability tends (asymptotically) 
to one, while the remaining probabilities tend to zero 
(Figure 8).  Thus the algorithm is adaptive in the sense of 
being able to track model order changes in real time.  A 
noisy set of data is used, which is generated as shown in 
Table 4 

The MV ARMA models used in order to create the data 
set are the ones used in Examples 1 and 3 plus a new MV 
ARMA (2,1), (i.e. θ = 3) with coefficients: 

A1= 
0.6 0
0.5 0.5
⎡ ⎤
⎢ ⎥−⎣ ⎦

, A2= 
0.8 0.2
0.3 0.1

−⎡ ⎤
⎢ ⎥−⎣ ⎦

,  

B1= 
0.85 0.8
0.1 0.23
− −⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 
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The noise covariance matrix R and the cardinality M for 

all three models are R= 
1 -0.08

-0.08 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

and M= 10 

respectively. 

100 Monte Carlo Runs were used; as Figure 8 shows, the 
MMPF is capable of identifying the correct model order 
(the corresponding posterior probability exceeds 0.9) for 
every time interval. When a model order change occurs, 
the MMPF algorithm needs M steps (in our case M = 10) 
to perform variable initialization. This is the reason for 
having a 10-step gap before the MMPF starts to increase 
the posterior probability corresponding to the true model. 
This initialization is performed automatically, without user 
intervention. 

4 CONCLUSIONS   

A new method for simultaneously selecting the order θ 
(p, q) and for estimating the parameters of a MV ARMA 
model has been developed, as an extension of the method 
proposed for the MV AR case (Pappas et al. 2006). The 
proposed method successfully selects the correct model 
order in very few steps and identifies very accurately the 
ARMA parameters. Comparison with other established 
order selection criteria (AIC and BIC) show that the 
method needs the shortest data set for successful order 
identification and accurate parameter estimation for all the 
simulated models, whereas the other criteria require longer 
data sets as the model order increases. The method 
performs equally well when the complexity of the MV 
ARMA model is increased. Finally, the method is capable 
of tracking, in real time, any model order changes. As a 
further step to this research is left the task to optimise the 
algorithm in order to be able to identify the order of the 
AR component (p) and MA component (q) separately and 
to apply the algorithm on financial time series analysis 
(Liatsis and Hussain, 2001). 
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Figure 2  Example 1, Posterior Probabilities Sequence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3  Example 1, Criteria Comparison– Number of Correct 
model order identifications out of 100 Monte Carlo Runs 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Example 2 Posterior Probabilities Sequence 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5  Example 2, Criteria Comparison– Number of Correct 
model order identifications out of 100 Monte Carlo Runs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6  Example 3 Posterior Probabilities Sequence 
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Figure 7  Example 3, Criteria Comparison– Number of Correct 
model order identifications out of 100 Monte Carlo Runs 

 

Table 1  Example 1, Estimated ARMA coefficient parameters 
 
 
 

Table 2  Example 2, Estimated ARMA coefficient parameters 
 
 
 
 

Table 3  Example 3, Estimated ARMA coefficients 
 
 
 

Table 4  Time Varying MV ARMA Order Sequence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Estimated Parameters RMS Error 

-0.8499 0.0033 

0.6508 0.0036 

0.7501 0.0040 

-0.5501 0.0032 

-1.9823 0.0092 

1.7011 0.0064 

1.8891 0.0074 

1.9831 0.0057 

Estimated Parameters RMS Error 

0.9932 1.0217 0.0152 0.0026 

0.2023 0.1516 0.0035 0.0016 

0.2310 0.0894 0.0021 0.0059 

0.1519 0.1013 0.0143 0.0023 

0.1829 -0.1027 0.0091 -0.0127 

0.1612 0.0059 0.0044 0.0019 

0.1702 -0.0048 0.0030 0.0017 

0.2408 0.1351 0.0371 0.0046 

0.2143 0.0742 0.0045 0.0028 

Estimated Parameters RMS Error 

-0.1691 -0.4535 0.0047 0.0094 

-0.1896 -0.3260 0.0054 0.0109 

0.1458 0.5244 0.0137 0.0090 

-0.0899 -0.6931 0.0161 0.0108 

-0.1982 -0.8441 0.0064 0.0122 

0.2234 -0.6407 0.0073 0.0147 

0.1154 0.7508 0.0094 0.0086 

-0.2573 -0.5471 0.0114 0.0094 

Steps Model order Steps Model order 

1 – 40 3 121 – 160 3 

41- 80 4 161 – 200 4 

81 – 120 2 
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Figure 8  Example 4 Posterior Probabilities Sequence 
 


