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Abstract. This study applies and compares classical approaches, specifically Akaike’s Information Criterion 
(AIC), Akaike’s Corrected Information Criterion (AICC) and Bayesian Information Criterion (BIC) and an 
extension of the well known multimodel partitioning algorithm (MMPA) to the time series prediction problem. 
The time series data is real and represents the monthly thunderstorm days, covering the period from 01/1980 to 
12/2005. The data has been collected from the National Meteorological Authority of Hellas. Comparison shows 
that all the methods produce satisfactory results with the adaptive MMPA having the best performance amongst 
the compared algorithms.  
 
 
1 INTRODUCTION 

The problem of identifying and predicting the future behavior of a time series is present for many years. 
Fitting an ARMA model to the time series data is an efficient way of approaching the previously mentioned 
tasks and is applied in many scientific fields [1-5]. An essential requirement for this procedure is the order 
identification and the parameter estimation of the ARMA model. Many theoretical criteria have been proposed 
for tackling the aforementioned problem. Some of them are the Akaike’s Information Criterion (AIC), Akaike’s 
Corrected Information Criterion (AICC), Bayesian information criterion (BIC) [6-10], and many more. Practical 
use of these techniques has shown that they are not always optimal and that they also suffer from deficiencies [11-

14]. Additionally they work efficiently only for Gaussian data and upon asymptotic results. Finally their 
applicability is justified only for large samples (n). Concluding it should be stated they are two pass methods, so 
they cannot be used in an on line or adaptive fashion. 

This paper is an extension to the work presented in [15-16] which concerns adaptive load forecasting and 
adaptive network anomaly respectively. The difference here is that the models used are not ARIMA but MV 
ARMA. The method is based on the well known adaptive multi-model partitioning theory [17-18], it is not 
restricted to the Gaussian case, is applicable to an on line/adaptive operation and it has been shown to be 
computationally efficient.  

2 PROBLEM REFORMULATION AND CRITERIA PRESENTATION 

An m-variate ARMA model of order (p, q) [ARMA (p, q)] for a stationary time series of vectors y observed 
at equally spaced instants k = 1, 2, …,n is defined as:  
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where the m-dimensional vector vk is uncorrelated random noise, not necessarily Gaussian, with zero mean 
and covariance matrix R, θ=(p, q) is the order of the predictor and A1,…,Ap, B1,…,Bq are the m x m coefficient 
matrices of the MV ARMA model. 

Obviously the solution to the problem is the identification of predictor’s order θ=(p, q) and the computation 
of the predictor’s matrix coefficients {Ai, Bj}. With the completion of these tasks, someone may proceed to the 
prediction of the future behavior of the time series. 

Assuming that the model order fitting the data is known and is equal to θ=(p, q), we can rewrite equation (1) 
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in standard state-space form as: 

 ( 1) ( )k + k=x x  (2) 
 ( ) ( ) ( ) ( )k k k k= +y H x v  (3) 
Now assign a new variable λ such as λ=max (p, q). Then x(k) is an m2 (λ+λ) × 1 vector made up from the 

coefficients of the matrices {A1, ..., Αλ, B1, ..., Bλ,}, H(k) is an m × m2 (λ+λ) observation history matrix of the 
process {y(k)} up to time k-(λ+λ). 

If the general form of the matrices Aλ and Bλ is respectively:  
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where I is the m × m identity matrix. 
In this study a comparison will be made amongst three classical criteria, AIC, AICC, BIC and the multimodel 

partitioning filter (MMPF). 
The first three criteria attempt to identify a model that best explains the data with a minimum of free 

parameters based on a trade off between the fit of the model (which lowers the sum of squared residuals) and the 
model’s complexity. In order to achieve that, they reward the goodness of fit and also include a penalty factor 
which is an increasing function of the number of estimated parameters. Their operation is based on the 
minimization of an objective function of the form: 

 Akaike Information Criterion (AIC) ( ) 2( )log p q
n
+

+Rθ  (7) 

 Akaike’s Corrected Information Criterion (AIC) θ

2( 1)log
2
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 Bayesian Information Criterion (BIC) ( )log ( ) log ( )n p q n a+ +Rθ  (9) 

If the system model is not completely known the MMPF is one of the most widely used approaches for 
similar problems [19]-[26]. In our problem assume that the model uncertainty is the lack of knowledge of the model 
order θ. Let us further assume that the model order θ lies within a known sample space of finite cardinality, i.e. 
that 1≤ θ ≤ M, θ∈ℑ, where ℑ denotes the set of integers. The MMPF operates on the following discrete-time 
model: 

 ( 1) ( 1 ) ( ) ( )k + k + ,k / θ k k= +x F x w  (10) 
 ( ) ( / ) ( ) ( )k k θ k k= +y H x v  (11) 

where θ is the unknown parameter - the model order in this case- F is the state transition matrix and w(k) is 
independent, zero mean, white noise not necessarily Gaussian with covariance Q which is usually set to a small 
positive non zero constant. The optimal MMSE (Minimum Mean Square Error) estimate of x(k) is given by: 

 ˆ ˆ( / ) ( / ; ) ( / )
M

j j
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=

= θ θ∑x x  (12) 

A set of models M is designed, each matching one value of the parameter vector, {(1,1), (2,2),…(M,M)}. The 
probabilities p(θj/k) for each model are set to 1/M, where M is the cardinality of the model set. 

A bank of Extended Kalman filters is then applied, one for each model, which can be run in parallel thus 
saving enormous computational time. At each iteration, the MMPF selects the model that corresponds to the 
maximum a posteriori probability as the correct one. This probability tends (asymptotically) to one, while the 
remaining probabilities tend to zero. The overall optimal estimate can be taken either to be the individual 
estimate of the elemental filter exhibiting the maximum posterior probability (MAP) [25], or the weighted average 
of the estimates produced by the elemental filters, as described in (12), which is the case used in this paper.  

The probabilities are calculated on–line in a recursive manner as it is shown by (13) and (14). 

 j
j jM

j j
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L(k/k;θ ) p(θ /k-1)∑
 (13) 
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where the innovation process: 
 ( ) ( ) ( ; ) ( )j j jk/k - 1; k k k/k - 1;= −y y H xθ θ θ  (15) 
is a zero mean white process with covariance matrix 
 ( ) ( ) ( ) ( )j j j jy k/k -1; k; k/k; k;= +TP H P H Rθ θ θ θ  (16) 

For equations (13)–(16) j = 1, 2, …, M. 
The formulation of the MMPF in this paper is different from the one presented in [21] and [27] because the 

algorithm is able in one pass to estimate the order and the coefficients of the AR and the MA component 
separately. This is done in the following way. The whole reformulation, equations (4) – (6) is based on the 
assumption that for model order θ=(p, q), a new variable is assigned such that λ=max (p, q). This implies that the 
order of both the AR and the MA component is equal. However in the last step of the proposed algorithm the 
coefficients of these components are calculated and if p>q then λ=p, the last (m2 (p-q)) MA coefficients are zero, 
if q>p then λ=q, the last (m2 (q-p)) AR coefficients are zero. 

3 RESULTS 

All four criteria will be applied on real data representing the monthly thunderstorm days, covering the period 
from 01/1980 to 12/2005, fig. 1. The data has been collected from the National Meteorological Authority of 
Hellas. The thunderstorm, days are strongly related to the lightning and in a way determine the lightning level in 
an area, i.e. the number of lightning flashes to Earth. The prediction of the thunderstorm days is essential to 
transmission and distribution line’s designers since the knowledge of the future lightning level of an area can 
result in a better design and consequently to the reduction of the lightning faults in lines. The data was 
normalized to take values from zero to one before using them as input to the four criteria. From the 312 
available data points, 160 were used for the ARMA model estimation. The produced model was used for the 
complete series prediction. The results are presented below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Monthly thunderstorm days (01/1980 – 12/2005)      Figure 2. Actual Series and MMPF prediction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Actual Series and BIC prediction          Figure 4. Actual Series and AIC prediction 
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Figure 5. Actual Series and AICC prediction             Figure 6. MMPF Actual Prediction Error 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          Figure 7. BIC Actual PredictionError   Figure 8. AIC Actual Prediction Error 

4 CONCLUSIONS 

Figures 2-5 show that the performance of all 
the criteria used can be considered to be 
satisfactory. However a more thorough 
observation indicates that the MMPF 
performance is slightly better than the rest. 
Figures 6-9 represent the actual error (|Real 
Value – Estimated Value|) for each point of the 
thunderstorm days series for each method. 
Obviously the error associated with MMPF is the 
smallest (Fig. 6). It is followed by BIC (Fig. 7), 
AICC (Fig. 9) and AIC (Fig. 8). 

             Figure 8. AICC Actual Prediction Error 
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