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Abstract. Critical structures often require extensive monitoring of their components to ensure proper condition 
and operation. Especially when operating under severe loads or extreme conditions, real time monitoring can 
detect evolving defects and prevent future failures. A combination of Non-Destructive Testing, Detection, 
Identification and Prediction techniques is required. Typically the data collection is done on line and the rest of 
the techniques are applied off line, due to time, space and computational requirements. In this work we 
investigate and compare the requirements of several advanced stochastic algorithms for detection, identification 
or prediction, such as EKF or MMPA, in order to apply them on line during data collection. Depending on the 
data collection rate of the NDT method and the speed of the selected algorithm, it is possible to combine real-
time monitoring of structure components with real-time identification and prediction using even the more 
demanding stochastic algorithms.  
 
 
1 INTRODUCTION 
 

Critical (i.e. rare, expensive, dangerous, etc.) structures often require extensive monitoring of their 
components to ensure proper condition and operation. Lifetime predictions and in-service inspections of each 
component are used to update the reliability analysis of the overall structure. Especially when operating under 
severe loads or extreme conditions, real-time health monitoring can detect evolving defects and prevent future 
failures in large structures (airplanes, nuclear reactors, bridges, etc.) [1-4].  

Fatigue is a major factor of component failure, therefore, Fatigue Crack Growth (FCG) monitoring and 
prediction is an essential tool for life prediction and maintenance. When studying structural components that are 
subjected to cyclic stresses over a prolonged period of time, a combination of Non-Destructive Testing, 
Detection, Identification and Prediction techniques is required. The models applied for detection and prediction 
depend on the selected FCG laws and NDT/NDE methods (e.g. Acoustic Emission, Thermal Emission, Potential 
Drop, etc.). Today’s FCG and NDT models become more and more complex and therefore advanced nonlinear 
and adaptive methods of increased complexity are required to process them [5-7].  

Typically, due to time, space and/or computational requirements, the data collection is done on site and the 
identification and prediction techniques are applied later off line. For example, data collected during a flight are 
processed later, when the aircraft is landed, using a powerful mainframe. Today, on board computers become 
smaller and more powerful and they are able to perform more complex processing tasks. Our aim is to improve 
structural reliability by reacting early and prevent catastrophic disasters. Early warning and reaction can be 
improved by performing all monitoring and prediction processing on-line, during the data collection. 

In this work we focus on the problem of FCG estimation, identification and prediction of the remaining time 
to failure, using NDE data collected by Acoustic Emission (AE) methods. We investigate the possibility to 
perform the identification and predictions on-line. We compare the requirements of several advanced stochastic 
algorithms for detection, identification or prediction, such as the Extended Kalman Filter (EKF) and the Multi-
Model Partitioning Algorithm (MMPA) proposed by Lainiotis [8-9]. Finally, we compare the speed and time 
requirements to the data collection rates in order to select the appropriate algorithm for on-line implementation.  
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2 THE ACOUSTIC EMISSION NDT/NDE METHOD 
 

The Acoustic Emission (AE) method uses several resonant sensors on the surface of a component to detect 
acoustic emissions originating from growing defects inside the component. The data collection system usually 
consists of a set of acoustic sensors, a preprocessing module and a data storage module. The preprocessing 
module separates potential AE signals from other acoustic signals or noise. When three ro more sensors are 
available, preprocessing also detects the exact position of the AE source. All potential AE signals are stored for 
later processing by more sophisticated algorithms. This processing step is computationally intensive and includes 
pattern recognition techniques, as well as identification, estimation and prediction algorithms.  

The collection of acoustic emissions is a demanding task and requires large and fast storage capabilities. In 
addition, sensitive sensors and fast hardware are required sampling at a higher rate. Most of the AE signals are 
irrelevant to the FCG. Other sources such as friction, heat, displacement, other components, etc., generate 
hundreds of AE signals every second.  

In order to provide the necessary processing time between successive inputs, it is necessary to eliminate as 
soon as possible any noise and any other irrelevant signal. This is performed on-line using filters and thresholds 
on the acquisition devices. For instance, the AE signals collected during FCG experiments [11] on a steel vessel, 
had specific characteristics such as duration (e.g. 182-283 μsec), rise time (e.g. 10-30 μsec), amplitude (e.g. 125-
280 mV), they appeared after a certain pressure level (e.g. 220-240 Bar), etc. By adjusting the device sensitivity, 
thresholds, buffers, etc. it was possible to reduce the amount of data from several hundreds per minute to just 10 
signals per minute.  

Further reduction was possible by calculating several signal characteristics either scalar (such as frequency, 
energy, maximum amplitude, RMS value, etc.), or array (e.g. using functions such as autocorrelation, FFT, etc.). 
Classification based on those characteristics can separate potential AE signals from irrelevant emissions. This 
step of AE pattern recognition can reduce further the amount of data arriving for the identification and prediction 
stage, down to an average of 1/min or even 1 AE every 5min.  

The statistics of the interarrival time, resulting after all preprocessing and cleaning of the AE signals, are the 
key values for selecting a processing algorithm and applying it on-line. Obviously each processing cycle should 
be completed before any new data is received. 

 
 

3 THE IDENTIFICATION/PREDICTION ALGORITHM REQUIREMENTS 
 

In order to use the advanced methods under consideration, the FCG/NDE models should be in a state-space 
form. Therefore they are written as a recursive State-Space model of the general form: 
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This model is suitable for all advanced algorithms, such as Kalman Filter (KF) or Extended Kalman Filter 
(EKF), and the state equation is compatible with all FCG semi-empirical laws. [7]. Depending on the NDT/NDE 
method applied (e.g. Acoustic Emission, Thermal Emission, Potential Drop, etc.), the measurement equation 
contains the relationship between monitoring data and crack growth.  

For the more complex ‘parameter identification’ problem, we let θ be the vector containing all unknown or 
varying parameters, then the state is replaced by the augmented state ( ) ( ) |

T
x k x kθ θ⎡ ⎤= ⎣ ⎦ .  

Another implementation is to consider the model with unknown parameters but without augmenting the state 
by the vector θ. In this model (16), θ is a random variable with known a-priori probability density p(θ /0). 
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The KF and EKF implementations are quite similar. Both the first order EKF algorithm for a nonlinear model 

(f, h) and the basic Kalman algorithm for linear model (F, H instead of  f, h) are given by the following set 
equations: 



Vassilios C. Moussas 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

-1

/ 1 1/ 1

/ 1 / 1

/ / 1  

ˆ ˆ/ 1   1, 1/ 1

ˆ/ 1 , / 1

ˆ ˆ/ / 1 / 1

T T

T T

P k k F k P k k F k G k Q k G k

K k P k k H k H k P k k H k R k

P k k I K k H k P k k

x k k f k x k k

z k k z k h k x k k

x k k x k k K k z k k

− = ⋅ − − ⋅ + ⋅ ⋅

⎡ ⎤= − ⋅ ⋅ ⋅ − ⋅ +⎣ ⎦
⎡ ⎤= − ⋅ ⋅ −⎣ ⎦

⎡ ⎤− = − − −⎣ ⎦
⎡ ⎤− = − −⎣ ⎦

= − + ⋅ −

%

%

 (3) 

On the other hand, MMPA equations for the optimal state estimation and its variance are: 
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where, x(k /k ; θ) και P(k /k ; θ) can be calculated using a Kalman filter designed for each model with parameter 
θ. For discrete or discretised parameters, the integrals are replaced by sums. It is clear that the MMPA requires 
for its operation L sub-filters either Kalman or similar algorithms, each representing a different candidate model. 

 
The above presented MMPA possesses several interesting properties: 
1. Its structure is a natural parallel distributed processing architecture and hence it is more suitable to current 

computers clusters. 
2. By breaking a large non-linear model to smaller sub-cases the algorithm has a much smaller dimensionality 

and hence much less architectural complexity. 
3. Although computationally intensive, it works faster due to parallelism and hence it is much more 

appropriate for real-time applications. 
4. It is more robust than any single filter as it is capable to isolate any diverging sub-filter. Numerous 

applications and simulations in the literature also show this. 
5. The algorithm is well structured and modular and it is easy to implement and modify on any standard 

programming environment (e.g. MATLAB). 
 

 
4 COMPUTATIONAL REQUIREMENTS 
 

For compatibility reasons to other researchers’ work, the computational requirements are calculated using the 
techniques presented in [10]. We calculate storage requirements and operations requirements based on the 
filtering algorithm equations and on the model dimensionality (n = state dimension, p = input dim., m = 
measurements dim.).  The following table summarizes the required array operations (A,B,C: general, S,T,U: 
symmetric, w,y,z: vector) 

 
Array Operation Result ADD MULT DIV SQRT 
A(n,m)+B(n, m) C(n, m) n ⋅ m - - - 
S(n, n)+T(n, n) U(n, n) 0.5⋅( n 2+ n) - - - 
w(n,1)+y(n,1) z(n,1) n - - - 

A(n, m)⋅B(m,p) C(n, p) n ⋅( m -1)⋅ p n ⋅ m ⋅ p - - 
A(n, m)⋅B(m, n) S(n, n) 0.5⋅( n 2⋅ m + n ⋅ m - n 2- n) 0.5⋅ n ⋅ m ⋅( n +1) - - 
A(n, m)⋅w(m,1) z(n,1) n ⋅( m -1) n ⋅ m - - 

A(n,n)-1 B(n,n) 0.5⋅(n3+3n2-2n) 0.5⋅(n3-n) 2⋅n-1 n 
Table 1 : Array Operations 

 
The KF requirements are calculated from equations (3) and depend only on n, p & m. The EKF requirements 

in the simplest case are equal to the KF, but when dealing with augmented models (parametric), the model 
matrices are larger and more complex. A new quantity, the size (q) of parameter vector θ, is included in 
dimension n. The MMPA is also using an extra parameter, the number of the candidate models (S). 
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K.F. 
0.5n2 +2.5n +0.5m2 +1.5m 
+2max[n2 , nm] +max[½(m2 +m) , 
½(n2 +n)] 

MUL: 1.5n3 +1.5n2 +0.5m3 +1.5m2 –m +3nm +1.5n2m +1.5nm2 +np2 +0.5n2p +0.5np 
ADD: 1.5n3 -1.5n +0.5m3 –0.5m +nm +1.5n2m +1.5nm2 +np2 +0.5n2p –0.5np 
DIV : 2m –1 
SQRT: m 

 
E.K.F. 
(n=n+q) 

0.5n2 +2.5n +0.5m2 +1.5m 
+2max[n2 , nm] +max[½(m2 +m) , 
½(n2 +n)] 

MUL: 1.5n3 +0.5n2 +0.5m3 +1.5m2 –m +2nm +1.5n2m +1.5nm2 +np2 +0.5n2p +0.5np 
ADD: 1.5n3 –n2 –0.5n +0.5m3 +0.5m +1.5n2m +1.5nm2 +np2 +0.5n2p –0.5np 
DIV : 2m –1  
SQRT: m 

 
M.M.P.A. 
(S=models) 

n2 +3n +0.5m2 +2.5m + S [ 2 + n 
+½(n2 +n) + KFStor] 
(* KFX = corresponding KF/EKF 
quantity) 

MUL: S [ n2 +2n +0.5m3 +2.5m2 +7 +KFMul ] 
ADD:  S [ n2 +3n +0.5m3 +m2 -0.5m +3 +KFAdd ] –n –1  
DIV :  S [ 2m +3 +KFDiv ] 
SQRT: S [ m +1 +KFSqrt ] 

Table 2 : Algorithm Computational Requirements 
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Figure 1. Comparison of memory (left) & operations (right) requirements, for EKF (grid) & MMPA (dark) 

algorithms for S= 2, q=3, n=1…20 & m=1…20.  
 

The advanced MMPA algorithm is more complex, requires more operations and, normally, it is more time 
consuming. Detailed analysis of the computational requirements for EKF and MMPA show that the complexity 
and the time consumption depend on the problem dimensionality and on the partitioning capabilities of the 
algorithm. It is also clear that parallel implementation is essential for the MMPA algorithm. The internal 
structure of MMPA is suitable for parallel implementation as all sub-filters are decoupled and can be 
implemented by separate processors. As a result the total number of operations may be higher but the time 
requirements are dramatically reduced to those of a single EKF filter plus a small overhead for the MMPA 
equations (4). 

 
Figure 2. Computational requirements for MMPA(ALF), simple EKF/KF, EKF(with augmented state, q=1-4)  

and MMPA(ALF-P) in parallel implementation (S=3-7). 
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Based on this analysis, a number of EKF & MMPA implementations were analyzed for the state-space model 
of Eq. 1 & 2. For each case studied, the required operations per iteration are calculated and shown in Figure 2. 
The EKF time requirements increase exponentially when its state is augmented by 1 to 4 parameters. The 
MMPA time requirements also increase with the number of EKF sub-filters (S), but only when the filter is 
implemented sequentially. If MMPA is implemented in parallel, the time requirements are minimal and the filter 
overhead is increasing linearly. The requirements of a simple KF/EKF (without augmentation) are also shown 
for reference.  

The real time implementation of the above algorithms is done in the MATLAB environment on a Pentium 4. 
The MMPA with 9 sub-filters completed its iteration in a few seconds. The algorithm can perform even faster 
using compiled C of Fortran code. In addition, by implementing the algorithm in parallel the above speed is 
multiplied even further. This speed is more than adequate for the AE signals data rate presented earlier. 
 
 
5 RESULTS 
 

The adaptive nonlinear algorithm MMPA is applied to the FCG problem for estimation and residual lifetime 
prediction. The MMPA is tested against a classic EKF with augmented state. From the point of view of 
Accuracy and efficiency, the results show that although both predictors do converge to the actual time to live, 
MMPA can do it more accurately and much sooner than the EKF. More precisely, MMPA converges sooner to 
the correct predictions requiring fewer measurements, and leaving more time for reaction than the EKF. This is 
even more important when the algorithms are working on-line. In addition MMPA is more robust than a single 
EKF as it incorporates the mechanism to isolate any diverging sub-filter, an attractive feature for on-line 
systems. From the point of view of computational requirements, MMPA is generally a more demanding 
algorithm than EKF, but, due to its partitioned structure, MMPA is suitable for parallel implementation. Parallel 
MMPA overcomes easily its complexity as it performs faster than the corresponding EKF. Its speed in a simple 
sequential implementation shows that it can be easily implemented on-line for the problem of AE signals data 
and for higher data rates.  
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