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Abstract: In this paper, an efficient adaptive nonlinear algorithm for estimation
and identification, the so-called adaptive Lainiotis filter (ALF), is applied
to the problem of fatigue crack growth (FCG) estimation, identification,
and prediction of the final crack (failure). A suitable nonlinear state-space
FCG model is introduced for both ALF and extended Kalman filter (EKF).
Both algorithms are tested in order to compare their efficiency. Through
extensive analysis and simulation, it is demonstrated that the ALF has superior
performance both in FCG estimation, as well as in predicting the remaining
lifetime to failure. Furthermore, it is shown that the ALF is faster and easier
to implement in a parallel/distributed processing mode, and much more robust
than the classic EKF.
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1. INTRODUCTION

Fatigue crack analysis is an essential tool for life prediction and
maintenance of structural components that are subjected to cyclic stresses
over a prolonged period of time. Lifetime predictions and in-service
inspections of each component are used to update the reliability analysis
of the overall structure.

Fatigue crack growth (FCG) monitoring and failure prediction are
critical in numerous engineering applications, such as civil engineering
structures (e.g., bridges, multistory buildings, offshore platforms, etc.) [1];
space, aircraft, and ship applications (e.g., reusable spacecrafts, airplanes,
helicopters, etc.) [2, 3]; complex and high risk plants (e.g., chemical
factories, nuclear reactors, etc.) [4]; and, in general, any rare, expensive,
or, dangerous structure that is impossible to test a priori in statistically
large samples.

For practical applications, it is vitally important to have online,
real-time monitoring and online estimation/identification of the FCG,
in order to obtain earlier and more accurate predictions of remaining
lifetime to failure. Any effort to attain these goals requires a) a realistic
mathematical model of FCG and b) effective algorithms for accurate,
fast, and efficient monitoring, estimation, and accurate prediction of
FCG and the residual lifetime.

In the past, several models of the mechanism of rupture due to
fatigue have been proposed. Although no complete theoretical model
exists, there is a large number of semiempirical models available, of
varying realism, complexity, and difficulty in their application [5, 6]. All
these models are nonlinear and follow the linear elastic fracture mechanics
(LEFM) concepts. Moreover, to utilize these models several methods were
proposed and used with varying success, such as linear regression (LR,
a standard approach for some models with a linear logarithmic form)
[7, 8]; generalized least squares (GLS); nonlinear least squares (NLLS); or
extended Kalman filter (EKF) (for nonlinear and more complex models)
[9-11].

In this paper, an efficient adaptive nonlinear algorithm for
estimation and identification, the so-called adaptive Lainiotis filter
(ALF), proposed by Lainiotis [12-16], and investigated and extensively
applied to important engineering problems by Katsikas and Lainiotis
[17], Lainiotis and Papaparaskeva [18], Plataniotis et al. [19], and Leros
et al. [20], is applied to the problem of FCG estimation, identification,
and prediction of the final crack (failure). First, a stochastic nonlinear
state-space model is presented, based on the most common FCG
equations. Then, the presentation of the nonlinear (EKF) and adaptive
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(ALF) estimation algorithms follows. Both model and methods are
then tested in terms of estimation and prediction accuracy using
real experimental results and with emphasis on the remaining lifetime
prediction. Finally, the computational complexity efficiency of the two
methods is compared. Through extensive analysis and simulation, it is
demonstrated that the ALF has far superior performance both in FCG
estimation, as well as in predicting the remaining lifetime to failure.
Furthermore, it is shown that the ALF is faster, easier to implement in
a parallel/distributed processing mode, and much more robust than the
classic EKF.

2. STATE-SPACE FCG MODEL
2.1. Physical Aspects of the Model: FCG Laws

A large number of FCG models are available in the literature. Although
some Markovian [21] or ARMA [22] models have been investigated, too,
most of the FCG models are semiempirical deterministic laws of the
form:

da/dN = g(a, C,n, AS, ...) (D

where, a is the crack length, N the number of fatigue cycles, and g(a)
a nonlinear function of the crack size a and the material or loading
parameters (e.g., Shanley, Paris, Forman, Larsen-Yang equations, etc.)
[5, 6]. In this work, we concentrate on the simpler but widely used laws
of Shanley and Paris. The nonlinear function g(a) of these FCG laws is
of the form:

g(a) = Ca" (Shanley) (2a)
g(a) = C[AK(a)]" = C[AS(na)"?Y]", (Paris) (2b)

where AS is the loading range, Y is a function of the geometry, and C
and n are material parameters to be identified. Equations (2a and 2b) are
simple, general, and their logarithmic form (3a and 3b) is linear as most
standard approaches require.

log (j—;) = log C + nlog(a) (3a)
log (j—;) = log C + nlog(AK(a)) (3b)

Both equations can be easily integrated, and, in addition, using a
simple transformation, the Shanley equation becomes identical to the
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Paris equation for infinite plates (Paris-IP). For these reasons, this form
of FCG law (Shanley or Paris-IP) is finally selected to demonstrate
the capabilities of the nonlinear and adaptive algorithms even with
less accurate models. As suggested by [23, 24], parameter estimation of
the FCG laws should be performed using the crack length a as the
independent variable instead of N. Equations (1 and 2) can then be
written in a recursive form, provided that step Aa is sufficiently small:

Aa/AN = g(a,C,n,...),or, at point k, Aa,/AN, = g(a,,C, n, ...)
= Ny — Ny =Aa/gla,, Con, ...)
= N = N+ frlag, Aay, Con, L) 4

All experimental results show that the crack propagation is a
stochastic phenomenon [27, 28]. In order to describe the stochastic
nature of FCG, these semi-empirical and deterministic FCG laws are
enhanced by randomizing their parameters (e.g., C and n) or by adding
some uncertainty terms, or both.

2.2. The Nonlinear State-Space Model

The model used in this work is a recursive state-space model of the form:

X1 = flk, x ]+ glk, x Jw,

5
z = hlk, x;] + v, ©

This model is suitable for all advanced algorithms, such as EKF
and ALF, and is created by the state-space representation of the general
equation (4) and therefore is compatible with all semiempirical laws of
type (1) [25]. In detail, the state and measurement equations are:

N N + f (a, Aa) wy
X =fx)+we | a = a+ Aa + 1 w, (6)
Aa {, ., Aa . Waq |,
N
zv=H -x,+v,:[N,=[100]-| «a + vy, (7
Aa

k

2.3. Augmentation of the Model

For the parameter identification problem, let 6 be the vector containing
all the unknown or varying parameters, then the augmented state of the
model will be

xy(k) = [x(k)|0]"
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The model equations become:

x(k+1) = flk, xo(k)] + glk, x4 (k)] - w(k)
z2(k) = hlk, x(k)] + v(k)

@)

Even if the original model was linear, the augmented model becomes
nonlinear and is identical to the model of eq. (5). The nonlinear state
space FCG model shown in (6) and (7) is flexible and able to include
and identify any number of unknown parameters in collaboration with
the EKF and ALF algorithms. By augmenting its state vector with the
unknown parameters vector, e.g., § = [C n], the model becomes:

N N + fz (a, Aa, C, n) Wy
a a+ Aa w,
X1 = fx) +we o | Ao = Aa + | wy,
c c w,
n k+1 n k w, k
)
N
a
i =H-x,+v, :[N],=[10000]-| A | +[vyli (10)
C
n

k

This model is also applicable to controlled FCG experiments where
Aa, N, and a are either controlled or directly observed. If an indirect
non destructive testing/evaluation (NDT/NDE) method is used (e.g.,
acoustic emission, thermal emission, potential drop, etc.), matrix H must
be replaced accordingly.

In order to apply the nonlinear method (EKF), it is also necessary
to calculate the partial derivatives of the nonlinear quantities. For this
state equation, matrix F contains the partial derivatives required:

| Ye Ux Ux Us
%a  9Aa  oC  on
01 1 0 0
F=|l0 0 1 0 0 (11)
00 0 1 0
00 0 0 1

2.4. Statistics of the Model

In this nonlinear model, the stochastic nature of FCG is expressed by
the state input vector w, the initial state vector x,, and the measurement
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error vector v. Vectors x,, w, and v are Gaussian random variables with
variances p,, Q, and R, respectively:

N, py 0 0 0 O
a, 0O p, 0 0 O
Xo=|Aa |, pp= 0 0 py, 0 0 |,
G 0 0 0 po O
n 0 0 0 0 p,
) (12)
gy 0 0 0 0
0 g0 0 0 O
Q=0 0 g, 0 0 |, R=[Ry]
0 0 0 g O
| 0 0 0 0 g,

The state augmentation is necessary for parameter identification,
but also presents some difficulties to the applied algorithms. i.e., i) an
even higher dimensionality with higher computational requirements, ii) a
higher model complexity and higher nonlinearity, and iii) more reasons
to diverge leading to reduced robustness. Although EKF is susceptible
to those difficulties, ALF overcomes all of them easily.

3. THE EKF

3.1. The EKF Algorithm

We consider the nonlinear model of equation (8). By taking the first
terms of the Taylor expansion of the nonlinear quantities, we have:

[k, x()] = flk, X(k/k)] + F(k) - [x(k) = X(k/k)] + - --
glk, x(k)] = glk, X(k/K)] +--- = G(k) + - -- (13)
hlk, x(k)] = hlk, k(k/k — 1)] + H(k) - [x(k) — X(k/k — D]+ -+ - ,

where
of(k, x) Oh(k, x N
Fy = LED gy = PED Gy = gk sn)
x=x(k/k) OX | =a(k/k=1)

(14)

A linear approximation of the original model is then given by:
x(k+1) = F(k) - x(k) + G(k) - w(k) + a(k) a5
15

2(k) = H(k) - x(k) + v(k) + b(k),
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where

a(k) = flk, k(k/k)] — F(k)k(k/k) and
b(k) = [k, x(k/k — 1)] — H(k)x(k/k — 1) (16)

The first-order EKF algorithm for the nonlinear model is a
variation of the basic Kalman algorithm designed for the mentioned
approximation [26] and is given by the following equations:

P(k/k —1) = F(k) - P(k — 1/k — 1) - FT(k) + G(k) - Q(k) - G" (k)
K(k) = P(k/k — 1) - HT (k) - [H(k) - P(k/k — 1) - HT (k) + R(k)]"!
P(k/k) = [I — K(k) - H(k)] - P(k/k — 1)
R(k/k—1) = flk =1, %k — 1/k — 1)] (7
Z(k/k — 1) = z(k) — hlk, &(k/k — 1)]
3(k/k) = x(k/k — 1) + K(k) - 2(k/k — 1)

3.2. Necessary Augmentation and Resulting Consequences

When dealing with augmented models, the different dimensionality can
create some problems for EKF that should be investigated. The model
matrices are larger and more complex. A linear or trivially nonlinear
model becomes highly nonlinear. More reasons for divergence appear
and the robustness of the algorithm becomes questionable. Extensive
tests, with Monte Carlo runs and various conditions, are required to
successfully tune the algorithm to the investigated problem.

4. THE ALF ADAPTIVE EFFICIENT FCG ALGORITHM
4.1. The ALF Algorithm

We consider the model with unknown parameters shown in equation (8),
but without augmenting the state by the vector 6.

x(k+1) = f[k, x(k); 0] + glk, x(k)] - w(k)
2(k) = hlk, x(k); 0] + v(k)

(18)

In this model, 6 is a random variable with known a-priori
probability density p(6/0).
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Given the measurement set Z, = {z(1), z(2), ..., z(k)}, the optimal
estimation x(k/k) and the variance P(k/k) are:

R(k/k) = / 3(k/k; 0)p(0/k)dO

(19)
P(k/K) = [ [P(K/K: 0) + (K /k) = &(k/k: )] - p(0/K) o),

where x(k/k; 0) ko1 P(k/k; ) can be calculated using a Kalman filter
designed for each model with parameter 6. The posteriori probability
density p(0/k, 0) of 0, given the measurements Z, is:

L(k/k; 0)

PO = Tk 0) - plojk — 1)ao

-p(0/k — 1), (20
where
L(k/k; 0) = |P-(k/k — 1; 0)] /2™ V2IR/A=10) P2 (/k=1:0)
P.(k/k — 1 0) = H(k, 0) - P(k/k — 1; 0) - H” (k, 0) + R(k) @21)
3(k/k — 13 0) = z(k) — H(k, 0) - F(k/k — 1; 0) - k(k — 1/k — 15 0)

For discrete or discritized parameters, the integrals are replaced by
sums and we have:

(k/k) = 3 x,(k/k)p(0:/k) (22)

i=1
M

P(k/k) = 3 [Pi(k/k) + [|2(k/k) — % (k/K)|I*1p(0;/k)

i=1
L;(k/k)
P
S Li(k/k) - p(0;/k — 1)
Ll(k/k) — |le(k/k _ 1)|—1/26—1/2“2,@//(—l)“z.P;l(k/k—l)’ (24)

p(0;/k) =

(0:;/k=1) (23)

where index i indicates the quantity corresponding to the value 0, of
array 0.

4.2. Advantages/Properties

The previously presented adaptive Lainiotis filter (ALF) possesses
several interesting properties:

1. Itsstructure is a natural parallel distributed processing architecture and
hence it is more suitable to current computers clusters (see Figure 1).

2. By breaking a large nonlinear model into smaller subcases, the
algorithm has a much smaller dimensionality and hence much less
architectural complexity.
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Sub Filter 1

(eq. 21)

ALF

Sub Filter 2 /i_,_’,_' Overall Estimation EE—
eq. 22
Measurements e )

Estimation

(eq. 21)
Z(k) \ / X(k)
~ P(KK)
N

--------- ALF
) Weight factors

(eq. 23,24)

Y
//

Y

Sub Filter M

v
\

(eq. 21)

Figure 1. Subfilter parallel structure of the adaptive Lainiotis filter (ALF).

3. Although computationally intensive, it works faster due to parallelism
and hence it is much more appropriate for real-time applications.

4. Tt is more robust than any single filter as it is capable to isolate any
diverging subfilter. This is also shown by numerous applications and
simulations in the literature.

5. The algorithm is well structured and modular and it is easy to
implement and modify on any standard programming environment
(e.g., MATLAB).

5. EXPERIMENTAL RESULTS
5.1. The Experimental Data

The experimental results of Virkler et al. [27], shown in Figure 2a, have
been selected for consideration. The specimens used to obtain these
results were center-cracked panels of 2024-T3 aluminum alloy 2.54 mm
thick, 558.8 mm long, and 152.4mm wide. The total number of specimens
was 68. The load was of sinusoidal form with frequency 20 Hz, maximum
value P,,,, = 23.353kN, and load ratio R = 0.20. Data recording started
at crack length, a, of 9mm and extended to a final length of 49.80 mm.
The accumulated number of cycles was recorded for each Aa = 0.20 mm,
first, and it was increased to 0.40 and to 0.80mm after crack lengths of
36.20mm and 44.20 mm, respectively. Thus, each specimen produced 165
data points.

5.1.1. Data Curves Representation and Fitting

Clearly, due to the mode of recording, these data are not equidistant
in time (= number of cycles) as the current analysis requires. With the
objective of preserving the raw data, the way to overcome this minor
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Real Experimental Data (Virer)

Crack Length (2)
Fatigue Cycles (N)

001 0015 002 0025 005 0035 004 0045
Crack Length (a)

(b)

Figure 2. Crack growth histories from 68 specimens; (a) original (« vs. N) and
(b) modified (N vs. «) presentation of the crack growth curves.

problem is by switching the roles of the variables (Figure 2b), i.e., by
considering the crack size a as the independent variable (“time”) and the
number of cycles N as the dependent variable to be studied (number of
cycles to failure = lifetime). This point of view is in full accord with [23]
and [28].

The experimental curves were first treated using simple methods that
produced some average estimation of the model parameters. Using the
Shanley law and the LR and NLLS, we estimated the mean parameter
values for the entire set of the 68 curves, as well as for each curve
separately (Table 1). These estimations can be used either as initial values
or as reference values. We can also consider those mean values as our a
priori knowledge and calculate the a priori predictions of the expected
lifetime, i.e., before any new data become available.

In the “C only” case, parameter n is considered known and equal to
its mean value for all 68 curves and only parameter C was calculated.

Table 1. Mean parameter values estimated by the LR and NLLS methods

Model Experim.  Estimated No. of

(Method) data parameters values Mean Variance
Shanley Cloud of n 1 1.86009 -
logarithmic ~ ~11,000 C 1 0.000204618 -
(LR) pomts Conly  ~11,000 0.000211324  3.2901e—09
Shanley Set of n 68 1.8091 1.3165¢—02
recursive 68 C 68 0.00018194 1.1324e—08
(NLLS) curves

C only 68 0.00016176  1.1644e—10
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x10° Simulated Data

Fatigue Cycles (N)

L L n L L L L L
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Crack Length (a)

Figure 3. Simulated data sets recreated using Shanley law and parameter C
values from Table 1.

Using Shanley law and parameter C estimations from Table 1 (last case),
we recreate 68 “ideal” curves. The simulations, as shown in Figure 3,
represent well the stochastic nature of FCG, although they are smooth
and do not cross each other. Depending on the selected FCG law and
the unknown parameters, we can produce more sets of simulated data
(with varying accuracy), but in this work we focus on the estimation
algorithms and their capabilities, so we considered only the simple
Shanley and Paris-IP laws.

5.1.2. Simulation and Lifetime Prediction

In online real time cases, reception and treating of additional data
improves the final predictions. When we start early with fewer points, our
predictions are not so accurate. After the middle point, the predictions
become more accurate and get closer to the real values. Depending on
the starting point along the crack propagation curve, the prediction
of the final crack size and its confidence (variance) vary significantly
(Figure 4).

Later in our analysis, the final crack is repeatedly predicted at
each estimated point, and thus producing a continuous curve indicating
the progress of lifetime prediction. For comparison reasons, we also
use three thresholds or prediction points (Figure 4) that correspond
approximately to the 5%, 20%, and 50% of a curves data. Finally, in
our tests, we often consider the worst case scenario, using experiments as
far as possible from the average. Such experiments are the two early or
leftmost (15, 64) and the two late or rightmost (49, 37) curves.
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T J T

0.01
0

using 5% of the data

using 20% of the data

0.01L ‘ :
0 15 2 25 3 35
. Al T T T
0.04 i
@ 0.03F ]
002 using 50% of the data
001k 3
0 25 3 35
X1

Figure 4. Simulation of the 15th curve and prediction of the final crack size
from four different starting points: without data (a-priori) and from the 9th,
36th, and 80th points of the curve.

5.2. [Estimation Using the Nonlinear and Adaptive Algorithms
5.2.1. The EKF Nonlinear Estimator

The EKF nonlinear estimator, shown in equation 17, is applied to
the crack growth experimental data of Figure 2b, using the nonlinear
and augmented state space model (equations 9-10) for Shanley law.
Parameter n is considered known, constant, and equal to its mean value.
Parameter C is considered unknown and therefore it is included in the
augmented state for estimation with initial mean and variance {C,, p¢}.
The results of the experimental data analysis in Table 1 are used as
initial values and statistics of the filter. State and measurement statistics
were calculated by comparing the real data (Figure 2b) to the “ideally”
simulated ones (Figure 3) by the Shanley crack law.

5.2.2. The ALF Adaptive Estimator

The ALF adaptive estimator shown in equations 19-24 is also applied
using the nonlinear state space model of equations 6-7, to the crack
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x10° Exp.No: 23
T T

3L 4

25} e 1

No. of Cycles (N)
o
T
S
.
3
I

—~ A-priori Pred.
Virker Data ||

—— Shanley Model
—— EKF-Estim.
—— ALF-Estim.
ol I | ! I ! T T

0.01 0.015 0.02 0025 003 0.035 0.04 0.045
Crack Length (a)

05 /

Figure 5. EKF and ALF estimations for a single experiment.

growth experimental data of Figure 2b, and with the same initial values
and statistics. The ALF, instead of state augmentation, uses a number
of EKF estimators with their corresponding nonlinear models. Each
estimator uses the nonlinear model with a different value for the C
parameter. All possible values are within the area defined by the results
in Table 1. The optimal number of these filters depends on the specific
case under consideration. In our case, we obtained excellent results using
just five to seven nonlinear filters.

Before applying any estimation algorithm, we also calculate the
a-priori prediction based on the average values estimated by the standard
LR and the NLLS methods (Table 1). Figure 5 presents the real
and simulated data, the a-priori prediction, and the EKF and ALF
estimations for one experimental curve. The EKF and ALF estimation
errors for the same curve become clearer in Figure 6a.

5.3. Prediction Using the Nonlinear and Adaptive Algorithms

As explained earlier (Figure 5), we also perform a remaining life
prediction at each data point, in order to calculate the number of fatigue
cycles (N) required for the crack length (a) to reach a critical final
size. The prediction is usually improved as more data points become
available.

Figure 6b presents the EKF and ALF prediction errors for the
same experiment. The vertical lines represent the amount of data used
(5%, 20%, and 50%). Prediction errors start from the a-priori error
and gradually converge to 0, i.e., the correct number of fatigue cycles.
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Figure 6. EKF and ALF estimation errors (a) and prediction errors (b) for a
single experiment.

The horizontal lines represent a prediction accuracy threshold equal to
+2% of the correct value. For the specific experiment in Figure 6b, we
see that ALF reaches the 2% threshold much earlier having received only
30% of the data, when EKF needs more than 60% of the data to reach
the same accuracy.

As the results from single experiments vary significantly, most
comparisons are made by averaging the results from five to ten
experiments. The smoother curves represent better the mean behavior of
the EKF and ALF algorithms. Figure 7 presents the average prediction
errors for EKF and ALF. Clearly, the ALF crosses the 2% error limit
with less than 20% of the data. EKF crosses the same limit much later,
using more than 50% of the data.

5.4. Number of Filters: Accuracy and Complexity

The number of filters used by ALF affects directly the accuracy and the
complexity of the algorithm. In Figure 7, in addition to the ALF with
7 filters, two more implementations are shown: a simpler ALF using
3 filters and a heavier ALF with 18 filters. Using more filters, their in
between distance becomes smaller and the ALF performance improves.
After a certain number of filters, the performance improvement is very
small in comparison to the increased complexity. In our case, the use of
7 subfilters proved to be an optimal implementation for ALF.

The robustness of ALF is also improved with the increased number
of EKF subfilters. EKF is sometimes diverging due to errors or
mistuning. This is fatal when a single EKF is applied for estimation,
as there are no means to correct it. This is not a problem in ALF as
it includes the mechanism to discard any EKF that is not performing
satisfactorily. If an EKF subfilter diverges, its a posteriori probability
tends to zero and its results are ignored. This behavior guaranties the
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Figure 7. EKF and ALF average prediction errors over ten experiments. The
three ALF implementations shown, use 3, 7, and 18 filters, respectively.

increased ALF robustness against any subfilter failure or any single EKF
estimator.

The advanced ALF algorithms are more complex and require more
operations and, normally, they are more time consuming. Detailed
analysis of the computational requirements for EKF and ALF can
be found in [29], where it is shown that the complexity and the
time consumption depends on the problem dimensionality and on the
partitioning capabilities of the algorithm. It is also shown that parallel
implementation is essential for the ALF algorithm. The internal structure
of ALF is suitable for parallel implementation as all subfilters are
decoupled and can be implemented by separate processors. As a result,
the total number of operations may be higher but the time requirements
are dramatically reduced to those of a single EKF filter plus a small
overhead for the ALF equations (22-24).

Based on this analysis, a number of EKF and ALF implementations
were analyzed for the state-space model of equations 6-7. For each case
studied, the required operations per iteration are calculated and shown
in Figure 8.

The EKF time requirements increase exponentially when its state
is augmented by 1 to 4 parameters. The ALF time requirements also
increase with the number of EKF subfilters, but only when the filter
is implemented sequentially. If ALF is implemented in parallel, the
time requirements are minimal and the filter overhead increases linearly.
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Figure 8. Computational requirements comparison for EKF, ALF, and ALF
in parallel implementation.

The EKF requirements (without augmentation, as it used by ALF) are
also shown for reference.

5.5. Remarks on ALF Efficiency

L.

Note that the proposed adaptive nonlinear ALF predicts the actual
time to failure much sooner than the EKF, using less than half of the
measurements that EKF requires.

Note also that both nonlinear predictors do converge to the actual
time. However, the ALF does so much sooner than EKF and with
fewer measurements, i.e., computations.

In other words, use of the ALF gives: a) better time to failure
prediction, much sooner (in time for corrective action); b) it does so
with fewer required measurements (and hence far less data acquisition
cost); and c) the ALF using fewer measurements requires a much
fewer number of computations (reduced computational cost).

6. CONCLUSIONS

The adaptive nonlinear algorithm ALF is applied to the FCG problem
for estimation and residual lifetime prediction. The ALF is tested against
a classic EKF with augmented state. Both filters use a nonlinear state-
space representation of a simple FCG law, and real experimental data.
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The results show that both predictors do converge to the actual time to
live. However, ALF can do it more accurately and much sooner than the
EKF. More precisely, ALF converges sooner to the correct predictions
requiring fewer measurements, and leaving more time for reaction, than
the EKF. Due to its partitioned structure, ALF is suitable for parallel
implementation. Parallel ALF overcomes easily its complexity as it
performs faster than the corresponding EKF. In addition, ALF is more
robust than a single EKF as it incorporates the mechanism to isolate any
diverging subfilter.
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