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ABSTRACT: In this work a non-linear method for the modelling and identification of the fatigue crack
growth (FCG) is presented. Unlike the standard method (e.g. ASTM E647-93) which is suitable mainly for
Paris-like FCG relationships and requires transformations of the data (determination of the derivative do/dN,
logarithms etc.) the proposed method is general and applicable to any FCG functional form, Its great advantage
is also that it can treat the o vs. N raw data directly. The method is based on the powerful and well-known non
linear least squares techniques for the parameter estimation. The relevant algorithms and its computational
efficiency are also fully developed and proved. A case study with the Virkler data is performed. Several FCG
laws are examined and the present non-linear as well as linear methodologies are implemented and compared,
where possible. As is shown, the new parameter estimates, in combination with Monte-Carlo numerical
simulations, provide realistic predictions of the crack length distributions and generally lead to improved

structural reliability assessments.

1 INTRODUCTION

Considerable research effort has been devoted on the
modelling of the fatigue crack propagation (FCG)
using a linear elastic fracture mechanics (LEFM)
approach (Sobczyk 1992, Hoeppner 1974, Fuchs
1980). The developed models, mainly semi-empirical,
allow the prediction of the behaviour of the crack o
as a function of cycles N. The material
characteristics, the dimensions of the specimen, the
load and other conditions appear as parameters of the
FCG models. As is well known however, the
experimental data of FCG, required for the parameter
estimation, show a considerable scatter even if they
are collected from very well controlled experiments.
In order to compensate this scatter, some parameters
are randomised and the distributions of their values
are used in the place of the fixed values. These
probabilistic or stochastic versions of the FCG
models are used in prediction, to determine either a
distribution of the crack size o at a given number of
cycles N, or, a distribution of cycles N needed to
reach a crack size a.

The stochastic FCG models constitute an essential
part of the probabilistic structural reliability
assessment (Lucia 1985, Yao 1986, Ditlevsen 1986),
which is performed using advanced codes
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(COVASTOL, RELIEF, Monte-Carlo etc.)
(Elishakoff 1983, Dusfresne 1985, Stavrakakis
1990), developed to predict the crack propagation
and to estimate the life-time distribution under
fatigue loading. It is thus clear that the quality of the
prediction depends directly on the quality of the
method used to process the experimental data and to
estimate the parameters. A poor estimation of the
parameters will lead to an inaccurate prediction of
the life-time, even if a sophisticated prediction code
is used.

The currently used standard method for this
estimation, ASTM E647-93, presents several weak
points. First, the method is strictly related to the
application of Paris-like models to describe the FCG.
Then, the determination of the derivative do/aN,
required by this method, introduces a scatter in the
FCG rate data which varies considerably with the
data processing technique used to evaluate the raw
test data. Specifically, the variability associated with
the incremental polynomial and total polynomial
techniques is substantially lower than that associated
with the modified difference and secant techniques
(Clark 1975). The incremental polynomial method is
the one suggested by the ASTM E647-93 standard.
Virkler et al.(Virkler 1979) in the analysis of their
FCG data, using the same processing techniques with




some minor modifications, have concluded
differently. They found that the polynomial methods
perform poorly because their inherent smoothing
action disguises the actual crack propagation
behaviour, especially if the data are observed from a
non-macroscopic viewpoint, and that the finite
difference method describes more accurately the
irregularities and inconsistencies of the raw data and
in effect describes quantitatively the variability of the
crack propagation process. Another problem of the
standard method 1is that, even after the
transformations have been performed on the o vs. N
data (derivative & logarithm), the resulting
log(dai/dN) vs. log(AK) data are still non-linear. This
non-linear relationship poses limitations for the least
squares regression technique which is used to obtain
a single-value index of variability.

The need to introduce more advanced or
alternative estimation and identification methods
(Solomos 1991) is thus obvious. The undesirable
subjectivity of the analytical technique used to
convert the raw test results to growth rate data, as
well as, the limitation to use simple laws such as the
Paris law for FCG rate modelling, may be alleviated
if new methods are used, based on the current state-
of-the-art of iterative minimisation methods for non-
linear regression. To satisfy those needs, this paper
presents a method for the identification of the model
parameters, capable of determining the parameters of
any FCG model. The proposed method uses well
established procedures in other engineering fields
based on non-linear modelling (Jaszwinski 1970,
Astrom 1971). Tts performance is compared to the
standard method, using the Paris law and
experimental FCG data. Predictions of the crack size
distributions, performed by the Monte-Carlo
simulations, are also used to compare the results of
the two methods.

2 IDENTIFICATION OF THE FCG MODEL

Several relationships have been proposed for the
modelling of the fatigue crack propagation (Schutz
1979, Thoft-Christensen 1982, Yang 1983, Lin
1985). The models vary from simple to more
complex ones (e.g. the hyperbolic sine model):

a=AesN (Shanley)
da _ 10CrSinh(C, Gog AR+ Cy)C,
dN

2.1
2.2)

The most widely used models, however, are the
Paris-Erdogan equation and its variations:

(Larsen)
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%" =C (AK)" (Paris) (2.3)
g ClAK) (Forman) (2.4)

AN (1-R)Kg —AK
Thus it can be generally agreed that the FCG can
be described by some equation of the following form

da

N f(AK, B), or, a = g(a, AK, B, N) (2.5)

where AK is the stress intensity factor range and B is
a vector of appropriate material parameters,
generally related among them. In the case of Paris
model the parameter vector is BT = [C n]. This is
also the case for the Forman's model when R (stress
ratio) and K, (fatigue toughness) are known. The
Shanley's model has B = C, and the Larsen's model
has a larger parameter vector B’ = [C, C, C; C,]. A
sensitivity analysis of a model can indicate which
parameters may be considered as constants and
which must be randomised, in order to reduce the
model's complexity. The estimation of the parameter
vector B can be done by applying identification
methods on the FCG experimental data as described
below.

2.1 Linear regression (standard method)

When using the standard method to estimate the
model's parameters, the choice of the FCG model is
restricted to the Paris law (2.3) and its extensions.
From the two unknown parameters C and n, the n
may be considered as fixed and only the C is
randomised. The procedure starts by calculating, for
every experimental value of o, the corresponding
value of the stress intensity factor range AK from the
general equation AK = Ac+/ma ¥(ar), where Ag is
the stress range and Y(o) is the configuration
correction factor. For the case under study below
(Virkler's center cracked panels), Y(a) can be
sufficiently approximated by the closed form
expression

Y(o) = f1/ cos(ma/ w)

Then, the derivative do/dN of the experimental
function o = f (), is calculated from the o vs. N
data. From the various proposed methods (graphical
procedure, secant method, modified difference
method, incremental polynomial method, total
polynomial method, etc.) the secant and the
incremental polynomial are mainly used. The

(2.6)



transformation of the experimental data ends by
taking the logarithms log(da/dN) and log(AK). The
transformation gives, for example, the following
linear form to the Paris equation:

d
1og[—a]: logC+n-log AK (2.7)

daN
Clearly, n is the slope and logC the intercept of a
straight line.

As is usually the case, it becomes evident from the
form of the plot log(do/dN) vs. log(AK) that the
Paris law cannot fit the whole set of points
satisfactorily. The data must be split into smaller
regions of AK, in order to be able to describe them
using the Paris equation. Usually they are divided in
three parts, in each of which the points exhibit an
almost linear behaviour. For every such AK region a
pair of parameter values (C, n) must be defined.
However even within these regions, due to inherent
material variability, conditions inaccuracies, and,
measure-ment and calculation errors, the data points
will not lic on a straight line. This variability can be
represented by an error term loge in the Paris
equation:

d
1og(ﬁa]= logC+n-log AK +loge 2.8)

The parameters C and n, as well as the standard
deviation of the error term loge are determined by
the method of linear least-squares. Regression lines
are obtained using this procedure for every AK
region. Usually the crack growth data are considered
as one group, for the determination of the fixed
parameter n of each AK region, and as separate tests,
for the determination of the randomised parameter C
of the same region. The standard method concludes
by reporting a value for the parameter n and a value
distribution for the parameter C, for every AK
region.

2.2 Generalised Linear Least Squares

The standard method applies the linear least squares
to fit a set of data to a straight line. An immediate
generalisation is to fit the data points (x,y;) to a
model which is not just a linear combination of 1 and
x (namely a+bx), but rather a linear combination of
any M specified functions of x. For example these
functions could be 1, x, x2, x3, ..., xM'1| in which case
their general linear combination,

Y(x) = a; + ayx + apx? + ..+ gyl 2.9
is a polynomial of degree M-1. These functions could
equally be sines, cosines or logarithms. The general
form of this kind of model is:
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M
Y= Y aX )
k=1
where X, (x), ..., X),(x) are arbitrary fixed functions of
x. The functions X,(x) can be strongly non-linear
functions of x, as, the term "linear" only refers to the
model's dependence on its parameters (Astrom
1971).

The so-called "general linear least squares" may
be used to fit more complex FCG models. Several
transformations may take place in order to give the
model the desired form. For example, if equation
(2.4) is the model, then, by taking logarithms and
replacing log(dot/dN) by y(x) and log(AK) by x, we
have:

y(x) =logC+n-x~log[(1- R)- K. —¢] @11

This generalised procedure is still limited by the
model's linear dependence on the parameters. In

order to fit more complex and highly non linear
models, a general non-linear method is needed.

(2.10)

2.3 A general non-linear method (non-linear least
squares)

In this method the estimation of the parameters is
obtained using the non-linear least-squares. The
algorithm used has been originally proposed by
Marquardt (1963) for the least-squares estimation of
non-linear parameters. This technique is developed
for the identification of non-linear systems. When
considering  these systems, several specific
assumptions are made concerning the model
structure. It is usually assumed that the system
equations are known except for a number of
parameters. In a typical case the identification
problem can be formulated as follows:

The model of the system is described by the state
equations in x and y

dx
= feu )

V=8, u, B 1) (2.12)

where P is the parameter vector, and u is the input.
The criterion for the parameter estimation is
provided by the loss function

V(y,ym)=V(ﬁ)=T[y(k)—ym(k,B)]zdk (2.13)
0

where y is the process output and y,, the model

output for instance , and T the observation time of

the phenomenon under consideration. The estimation

problem for a non-linear parametric model thus

reduces to a non-linear optimisation problem. The



Table 1. Capabilities of the parameter estimation methods.

Type of the Model's Identification Procedure Capable
Dependence on: to Solve the Problem
Linear Generalised | Non-Linear
Parameters State (x) Regression Least Least
Squares Squares

Linear Linear Yes Yes Yes
Linear Non-linear No Yes Yes
Non-linear Non-linear No No Yes

necessary computer procedures for the above
technique can be found in any scientific computer
library such as IMSL, NAG, SAS, Numerical
Recipes, etc. For the present work, the non-linear
modelling procedures of the SAS, SAS/ETS and
Numerical Recipes packages were used.

Before applying the general method, 2 FCG model
must be selected. It is possible to use a Paris-like
model equation (2.3), as in the standard method, or,
any other FCG model of interest e.g., (2.1), (2.2),
(2.4) or (2.5). Once selected, the model equation
must first be written in a form compatible with the
FCG data in hand and then introduced in the non-
linear modelling procedure. Usually, an integrated or
recursive form of the model such as

a=fM), or, N=f(a), or,
u'k+I=G(ab AK, B’ N, ke N, k+ 1), etc.

is in accordance with the discrete iterative
identification  algorithms, developed on digital
computers, and thus suitable to treat the discrete
FCG data.

When the model is ready the modelling procedure
may be applied to estimate the values of the
unknown parameters for every experiment and, if
required, for every AK region. As a result, value
distributions for all the model parameters are
available. If these distributions or the analysis of the
model show that some of the parameters can be
fixed, then the estimation can be repeated using these
fixed values.

(2.14)

2.4 Discussion

The proposed method uses directly the original (o
vs. N) raw FCG data and avoids any transformation
that can affect their precision. The standard method
instead, in an attempt to give a linear form to the
data, applies two non linear transformations.
Moreover, the scatter in the FCG rate data varies
considerably with the data processing technique used

to evaluate the raw test data. This is even more
important as, the selection of the best technique
(polynomial, secant, etc.), is not quite clear, due to
contradictory opinions found in the literature
(ASTM, Virkler). By applying the log,,
transformation, the FCG rate data are taking a less
non-linear form, which may permit the approximation
of the data with the linear Paris form (2.8).

When the identification is applied, what happens
in fact is, that the proposed general method fits the
original non-linear FCG data with a non-linear
function of our choice and estimates any unknown
parameter. The standard method, instead, fits the less
(but still) non-linear and error corrupted FCG data
with a linear function and estimates its slope and
interception. It is also clear that the standard method
may compete with the general non-linear method
only for a certain number of problems, where only
the use of a Paris-like law is required (Table 1).

3 COMPARISON OF THE METHODS USING
EXPERIMENTAL DATA

For assessing the methods with real data, the
experimental data from D.A. Virkler et al!! on
aluminium (2024-T3) test specimens were used.
These crack growth data were generated from 2.54
mm thick centre-cracked panels, 558.8 long and
152.4 wide. 68 replicate tests were performed under
identical loading conditions (Ao = 48.263 kPa).
Crack growth was monitored with a microscope of a
0.001 mm resolution. The data were recorded at
consistent discrete crack length levels, starting at a
half crack length o of 9.00 mm and extending to a
final length of 49.80 mm. The measurement interval
Ao was 0.20 mm first, and it was increased to 0.40
mm and to 0.80 mm, after half crack lengths of 36.20
mm and 44.20 mm were reached, respectively.

3.1 Estimation Results

Following the standard procedure, the derivative
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Log(da/dN) vs Log(DK)

Figure 1. Part of the Virkler's data illustrating the
three AK regions.

Table 2. C & n estimations (linear regression).

Group Region Region Region Entire
of data: I Il I Curve
EflogC] -25.289 -21.982 -26.605 -23.13847

E[n] 3.79937 2.44886 3.98811 2.87150

Table 3. C & n estimations (non-linear method).
Group Region Region Region Entire
of data: I 11 111 Curve
EflogC] -25.289 -21.982 -26.605 -23.13849
E[n] 3.79938 2.44886 3.98811 2.87151
Var(n)  0.320 0.132 1.175 0.0273

do/dN and the values of AK were calculated from the
experimental data. The derivative do/dN was
calculated using the secant method. After taking the
logarithms of both quantities, the resulting
log(do/dN) vs. log(AK) curves were plotted (Figure
1). The plot may be separated in the following three
AK regions, before applying the linear least-squares.
Region I contains all points where AK < 12.04 (in
N/mm37?) or o < 18.4 mm, region I : 12.04 < AK <
20.28 or 18.4 < a < 39.0 mm, and, region III : AK >
20.28 or o > 39.0 mm.

During the linear regression, the data were first
considered as one group (instead of 68) and they
were used to estimate the slope n and intercept C of
the straight line. The estimated values of n & C, for

Al
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every AK region, are shown in Table 2. Had all the
data been considered simultaneously in one set, the
linear regression method would have produced the
results of the last column of Table 2.

The estimation was repeated for the parameter C
only, by fixing the value of the parameter n. The
estimated distributions of the parameter C for every
AK region are shown in Figure 2.

The same form of the Paris equation is also used
by the non-linear procedure. For comparison reasons
the estimation of the parameters is repeated for all
AK regions, as they were defined for the standard
method. The non-linear treatment of the data as 68
curves produces the results shown on Table 3.

Again, the non-linear treatment of the data as one
group of points, instead of 68, produces the same
results for the three AK regions, but, slightly different
results when processing the entire curve, namely:
E[logC] = -23.193, E[n] = 2.8961, Var(n) = 0.0771.

The estimation was repeated for the parameter C
only, by fixing the value of the parameter n. The
estimated distributions of C are identical to those
presented in Figure 2.

The results of the two methods (Tables 2 & 3) are
almost identical. They show some differences after
the fifth decimal place, mainly due to round-off
errors and different algorithmic structure. It is worth
comparing the above results with those derived by
employing the maximum likelihood method
(Ditlevsen 1986), i.e. E[logC]= -26.18, E[n]= 2.872,
Var(n)= 0.02898.

Next, the more complex task of fitting equation

(2.2) to the Virkler data is undertaken. Obviously,
the standard method can not be of any help, and
resorting to the general non-linear approach is
necessary. After performing some preliminary runs
for assessing the parameters sensitivity it is
concluded that the dominant parameter C; can be
practically considered as constant, equal to C;= 0.5.
The other parameters are then estimated, first by
considering the data as 68 different curves and then
by considering all data points as one group. The
results of the parameter estimation were: E[C,]=
4.87717, E[C,]= -1.1843 & E[C,]= -6.6464, for the
first, and, E[C,]= 3.627, E[C;]= -1.4022 & E[C,]= -
6.1633, for the second case, respectively.
These results compare well with those where 64 of
the 68 experiments and the method of maximum
likelihood had been used (Lin 1985): C;= 0.5, C,=
3.4477, C3=-1.3902, C,= -4.5348.

The estimation was repeated for each one of the
parameters, by fixing the values of the remaining
three. The distributions of two parameters C; & C,
are shown in Figure 3.
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Figure 4. Distributions of N at the final crack size.
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3.2 Simulation

The results of the non-linear approach are next
inserted correspondingly in equations (2.2) and (2.3),
and Monte-Carlo simulations are carried out. The
values of the randomised parameters - C for eq. (2.2)
and C; for eq. (2.3) respectively - have been created
using the above histograms and a uniform random
number generator. For improved results, specialised
random number generators may be used to fit better
the estimated distributions .

After 200 Monte-Carlo runs, the distributions of
cycles (V) to reach the final crack size o, are plotted
in figures 4 & 5, together with the corresponding
data from Virkler, and as is observed they show the
proper characteristics of the original data.

4. CONCLUSIONS

A general method for processing fatigue crack
propagation data has been presented, in an attempt to
overcome the restrictions of the standard procedures.
The results from the parameter estimation and
simulation prove that the combined application of
non-linear modelling and Monte-Carlo simulation,
creates a powerful general method for FCG data
processing and structural reliability assessment. Both
techniques are general i.e. independent of the type of
the FCG law and of the form of the data. Moreover,
they are computationally robust and they have been
applied successfully with no problems for the cases
under consideration.

The advantages of this general method become
clear in the most difficult cases i.e. when selecting the
best model among others of different type, or, when
the modelling equation is highly parametric and non-
linear. In order to create a more complete tool, the
presented general method could also include a third
technique for real-time estimation and identification.
This technique comes from the areas of non-linear
filtering and is beyond the scope of the present work.
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