
Structural Safety, 9 (1991) 211-226 211 
Elsevier 

A TIME SERIES APPROACH TO FATIGUE 
CRACK PROPAGATION 

G.P. Solomos and V.C. Moussas 

Commission of the European Communities, Joint Research Centre, 
Institute for Systems Engineering and Informatics, I-21020 Ispra, Va, Italy 

(Received January 2, 1990; accepted in revised form September 12, 1990) 

Key words: fatigue; crack growth; residual lifetime; prediction; stochastic models; time series; 
autoregressive moving-average processes. 

ABSTRACT 

The inherently nonlinear phenomenon of fatigue crack propagation is modeled as a linear random 
process. To a first approximation, simple, nonstationary time series models are introduced and 
standard techniques for determining the parameters of autoregressive integrated moving-average 
processes are applied. Multiplicative time series models are next utilised for the representation of a 
group of crack history curves. Implementation of the models on the Virkler experimental data set 
yields satisfactory results. Reliable Gaussian approximations to the distribution of the time required 
by a crack to reach a specified critical length are obtained, and the usefulness of the approach is 
demonstrated when updating lifetime predictions after periodic inspections. 

1. INTRODUCTION 

As fatigue is an important factor in the engineering design, considerable effort has been 
devoted into developing analytical methods for its modeling [1,2]. Fatigue in metals is manifested 
with the appearance of small cracks, which, under alternating loading, propagate and eventually 
lead to failure of a component or a structure. It is evident that a flawed structure is not 
necessarily disqualified from service as it may still possess substantial remaining life. The 
assessment of the rate of growth of a crack is thus important for the avoidance of a catastrophic 
failure. 

It is also widely accepted that the fatigue crack propagation phenomenon is probabilistic in 
nature. Several sets of experimental results can confirm this claim. Figure 1, for example, shows 
the crack propagation time histories of identical specimens under identical loading conditions [3]. 
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Fig. 1. Crack growth histories of center cracked specimens, Ref. [3]. 

The scatter of these curves is noticeable. It thus becomes clear that for assessing effectively the 
reliability of a cracked component,  one has to resort to probabilistic and statistical methods. In 
such an assessment one would need to primarily determine the probability distribution of the 
damage (crack size) at some future time, and the probability distribution of the time required by 
a crack to reach a specified critical size. 

Several methods with varying degrees of success have been developed so far to these ends. 
Prominent among them are those based on the Markov processes approach [4-11]. Going a step 
further, it is the objective of the present work to investigate on the possibility of applying the 
theory of linear times series in this field. It is felt that if such an approach proves fruitful, the 
fully developed techniques of time series theory will offer a powerful tool to both the fatigue 
researcher and the designer. 

As the analyses to be used are data based, the experimental results of Ref. [3], shown in Fig. 1, 
have been selected for consideration. The specimens used to obtain these results were center 
cracked panels of 2024-T3 alurninum alloy 2.54 mm thick, 558.8 mm long and 152.4 mm wide. A 
central stress raiser slit 2.54 mm long was machined by electro-discharging and the center line of 
the specimen was used as measuring reference. The crack initiation was accomplished with an 
initially higher load level. The total number  of specimens was 68. The load was of sinusoidal 
form with frequency 20 Hz, maximum value Pmax = 23.353 kN and load ratio R---0.20. Data 
recording started at half crack length, a, of 9 mm and extended to a final length of 49.80 ram. 
The accumulated number of cycles were recorded for each Aa = 0.20 mm of crack growth over 
the range 9.00 ~< a ~< 36.20 mm, for Aa = 0.40 mm over the range 36.20 ~< a ~< 44.20 mm and for 
Aa = 0.80 mm over the range 44.20 ~< a ~< 49.80 mm. Thus each specimen produced 165 data 
points. 

Clearly, due to the mode of recording, these data  are not equidistant in time ( =  number  of 
cycles) as the relevant analysis requires. With the objective of preserving the raw data, the way 
chosen to overcome this minor problem is by switching the roles of the variables, i.e. by 
considering the crack size a as the independent  variable (" time") and the number  of cycles N as 
the dependent variable whose behavior is to be studied. This point of view is in full accord with 
the Ref. [12] critical analysis of fatigue crack growth laws, and also with Ref. [13], where it is 
shown that the number of cycles variable lends itself naturally to be modeled as a random 
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process. Next, in order to avoid overcongested and overdetailed data, in which local anomalies 
might disturb overall trends, data pairs (N, a)  corresponding to Aa = 0.40 mm and starting from 
a 0 = 9 mm are retained for each replicate. For  this reason, the seven last points of  each replicate, 
corresponding to Aa = 0.80 ram, are excluded as non conforming. It is believed that they also do 
not carry any additional information on the fatigue crack growth (FCG) investigation, as by that 
point all relevant characteristics of the curves have been manifested. 

Thus, finally, the working data base contains 68 replicates with 89 points each, sampled at 
intervals Aa = 0.40 ram, starting at a 0 -----9 m m  and terminating at af = 44.2 mm, Fig. 2. As 
shown in this figure, for referencing and computat ional  convenience, the crack sizes will also be 
identified, indiscriminately, by their cardinal number  A, i.e. A = 1 corresponds to a = 9 mm, 
A = 2 t o a = 9 . 4 m m ,  . . . ,  A = 8 9 t o  a = 4 4 . 2 m m .  

2. THEORETICAL BACKGROUND 

The principle underlying this methodology is that the fatigue crack growth data (N, a)  occur 
in a form of a " t ime"  series where observations are dependent  [14,15]. This dependency is not  
necessarily limited to one step (Markov assumption) but  it can extend to many  steps in the past 
of the series. Thus, in general, the current  value N a ( =  number  of cycles at crack size a)  of the 
process N can be expressed as a finite linear aggregate of previous values of the process and the 
present and previous values of a random shock u [16], i.e. 

N a = dPlNa_ 1 + ~ 2 N a _ 2  + . . .  + ~ p N a _  p + u a - OlUa_ 1 - -  0 2 U a _  2 . . . . .  OqUa_ q (1) 

In this equation N a, N a _  1, N a - 2 , . . .  a n d  u a, u a _  1, Ua_ 2 . . . .  represent respectively the number  of 
cycles and the value of the random shock at the indexing equally spaced crack sizes a, a -  1, a 
- 2 . . . . .  The random shock u constitute a white noise stochastic process, whose distribution is 
assumed to be Gaussian with zero mean and standard deviation o.,. 

Defining the autoregressive operator of order p by 

q~(B) = 1 - ~ 1 B  - t~2 B 2  . . . . .  ~ p n  p ( 2 )  
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and the moving-average operator of order q by 

O ( B )  = 1 - OaB - 02 B2 . . . . .  O q n  q 

eqn. (1) can be economically rewritten as 

d~( B ) N a = O (  B ) u a  

(3) 

(4) 

It is recalled that B stands for the backward shift operator defined as B~Na = Na-~ .  Another 
closely related operator, to be used below, is the backward difference operator V defined as 
xT N,, = N a - N a_ 1 and thus equal to 1 - B. 

In an attempt to physically interpret eqn. (1) or eqn. (4) and connect them to the observed 
inhomogeneous crack propagation properties, one could associate the autoregressive terms to the 
mean behavior of each individual test curve and the moving-average terms to the non smooth- 
ness within it [13], which is due to the inhomogeneity of the material ahead of the crack tip. In 
this manner, this spatial irregularity is approximated by the homogeneous random field u [17]. 

The autoregressive moving-average model (ARMA) as formulated above is limited to model- 
ing phenomena exhibiting stationarity, i.e., broadly speaking, fluctuating about a fixed mean. 
Clearly, this is not the case for the fatigue crack growth curves of Fig. 2 for which nonstationary 
processes will have to be employed. It is possible though that, even under these circumstances, 
the processes still possess a homogeneity of some kind. It is usually the case that the d th 
difference of the original time series (or, a nonlinear transformation of it) exhibits stationary 
characteristics. The previous ARMA model could than be applied to the new stationary process 
v d N  and eqn. (4) will correspondingly read 

dp( B )VdNa = O( B )ua (5) 

This equation represents the general model used in this study. Clearly, it can describe stationary 
(d  = 0) or nonstationary (d ¢ 0), purely autoregressive (q = 0) or purely moving-average ( p = 0) 
processes. It is called autoregressive integrated moving-average (ARIMA) process of order 
( p, d, q). It employs p + q + 1 unknown parameters q~l . . . . .  @p; 01 . . . .  , 0q; Oru, which will have to 
be estimated from the data. 

Expecting that the fatigue crack growth curves would eventually reveal some stationary 
characteristics, the task of estimating the aforementioned unknown parameters is undertaken 
below. A phenomenological theoretical model will thus be built identifying the mechanism of 
crack propagation under certain loading and geometrical conditions. An outcome of direct 
practical importance will evidently be the possibility of forecasting the future behavior of the 
series N a from its current and past values. This, of course, will be expressed in a probabilistic 
manner, in the form of a distribution. 

Elaborating briefly on the terminology [16], if the values of N are known up to a current crack 
size a and a prediction of N is desired for I steps ahead (i.e., at crack size a + l), then one refers 
to "origin a" ,  "lead time l "  and "forecasted value Na(l)". The methodology employed is 
capable of providing, beyond a "best" value of the forecast, probability limits on either side of it 
for a set of convenient values, for example 50%, 95%. If a + l is chosen to represent a critical 
value of the crack size, these forecasted results will obviously yield the distribution of the 
time-to-failure. 

The general scheme for determining a model includes three phases, which are: 
- model identification, where the values of the parameters p, d, q are defined 
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- parameter estimation, where the (q~ } and { 0 } parameters are determined in some optimal 
way, and 

- diagnostic checking for controlling the model's performance. 
As is stated however in Ref. [16], there is no uniqueness in the ARIMA models for a particular 
physical problem. In the selection procedure, among potentially good candidates one is aided by 
certain additional criteria. Among them are the Akaike's Information Criterion (AIC) and the 
Schwartz's Bayesian Criterion (SBC) [18]. If L=L(qh , . . . , q~p ,  01 . . . . .  Oq, ou) represents the 
likelihood function, formed during the parameter estimation, the AIC and SBC are expressed, 
respectively, as 

A I C = - 2 1 n  L + 2 k  (6) 

S B C =  - 2  In L + In ( n ) k  (7) 

where k = n u m b e r  of free parameters ( = p  + q) and n = n u m b e r  of residuals that can be 
computed for the time series. Proper choice of p and q calls for a minimization of the AIC and 
SBC. Last, in the overall efficiency of the model, the principle of parsimony should be observed. 
Inclusion of an excessive number of parameters might give rise to numerical difficulties 
(ill-conditioning of matrices etc.), and might render the model too stiff and impractical. 

All numerics of the present work has been carried out using the relevant tools of the SAS 
package [18], which have proven powerful and reliable. Therefore, no explicit reference is made 
to the utilized mathematical methods and techniques. 

3. MODEL BUILDING--SINGLE SAMPLE FUNCTION 

In the search of the parameters p, d, q of the ARIMA model of eqn. (5) we work first with 
individual crack curves from Fig. 2. For reasons of representativeness, but otherwise randomly, 
the first curve is chosen terminating with approximately 240000 cycles and lying close to the 
middle of the plume of the sample functions. This curve is differenced three times. The original 
curve and its differences are shown in Fig. 3. It is observed that while the second difference starts 
exhibiting some stationarity, the third produces a quasi stationary signal. Its mean is definitely 
fixed and equal to zero but its intensity still varies over its length. Similar are also the results of 
other curves, which are examined as an additional check. The parameter d might thus have the 
value three. 

For confirming this, the autocorrelation functions of the curves of Fig. 3 (record 1) are 
calculated and shown in Fig. 4. With approximately m = 89 observation points it is adequate to 
plot the autocorrelations using ( m / 4 )  -" 22 lags. It is seen that the autocorrelation function of the 
original crack curve N and its first difference xTN show pronounced their nonstationary 
characteristics. They do not die out fast enough and they decay almost linearly. The autocorrela- 
tion of x7 2N and even more that of x7 3N die out in an exponential manner. Further, these 
autocorrelations (and their partial autocorrelations, not shown here) seem to be mixtures of 
exponentials and damped sine waves. This implies [16] that the sought process must be of the 
mixed type (containing both autoregressive and moving-average components). It is thus con- 
firmed that d = 3 can be used. 

For the determination of the parameters p and q it has been deemed appropriate to resort to 
the aid of AIC and SBC, while for practical reasons it would be desirable to keep q as small as 
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Fig. 3. Original curve and successive differences of record 1. 

possible. Thus several models have been tested and their AIC and SBC indices computed with 
d = 3 and ranges of  p and q, respectively, p = 0 - 1 2  and q = 0 -1 .  For record 1, these results are 
plotted in Fig. 5. It is seen that, according to both AIC and SBC, minima appear for q = 0 at 
p = 5 and for q = 1 at p = 2. This latter is actually absolutely smaller. The values of  the 
corresponding parameters are given in Table 1. 

The parameter selection is postponed for a while until these two A R I M A  models get tested for 
their predictive capabilities performance. Referring to the previously introduced terminology, 
this test consists of  forecasting the number of  cycles N departing from three different origins A, 
which are chosen to be A = 40 (a  = 24.8 mm), A = 55 (a  = 30.8 mm) and A = 75 (a  = 38.8 mm). 
The lead times are, correspondingly, selected as l = 60, l = 45 and l = 25, thus producing 
forecasts up to a = 48.6 mm. Clearly, this value lies beyond the utilized data base of  Fig. 2, 
where af = 44.2 mm, but within the original experimental data, where area x = 49.8 mm. 

Figures 6 and 7 show these forecasting results for the above two entertained A R I M A  models. 
Three curves are plotted in each graph: the actual data and the forecasted ones referring to the 
vertical axis on the fight, and the residual error ( =  a c t u a l -  forecasted value) referring to the 
vertical axis on the left. The middle broken vertical line indicates the origin. It is very 
encouraging to see that the residuals are in general small. As  expected, the greatest discrepancy 
appears when one predicts from the early origin of A = 40. Even in this case however, the 
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situation for shorter forecasts is still good. In addition, the actual curve always falls within the 
95% Gaussian probability limit curves which can be drawn on each side of the forecasted one 
(and not shown here for retaining the figures' legibility). 
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Fig. 5. Behavior  of the value of  the cri teria AIC  and  SBC for record 1. 
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Forecasting from the later origins produces, of course, excellent results. In particular, for 
p = 2, q = 1 the actual and the forecasted curves are practically indistinguishable. This fact, 
along with the general philosophy of model building outlined above, leads to the conclusion that 
the selection p = 2, q -- 1 is the most  suitable for the case under consideration. 
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Therefore, record 1 can be best reproduced by the process defined by the (2, 3, 1) ARIMA 
model 

(1 - 0 1 B  - 02 B 2 )  vaN. = (1 - 0 1 B ) u  a (8) 

o.) 
¢Y 

10000 

5 0 0 0  

0 

--5000 

--1000C 

. . , /  

/ 

. . . . . . . . .  i . . . . . . . . .  i . . . . . .  i , , . ~  . . . . . . . . .  g . . . . . . . . .  i . . . . . . . . .  

0 1 5 3 0  4 5  6 0  7 5  9 0  

A 

N 

. 5 5 0 0 0 0  

0 

"5 

10000 

5 0 0 0  

0 

--5000 

--10000 

I 

/ ' ]  ~ .;,. . . . . - 'v , .  ; , ,  

i 
i 

, . . . . . . . . .  J . . . . . . . . .  i . . . . . . . . .  ~ . . . . . .  ' . . . i  . . . . . . . . .  i , . , I  . . . . .  i 

0 1 5  .-%0 4 5  6 0  7 5  9 0  

A 

N 

550000 

0 

10000 

5 0 0 0  

N 

3 3 0 0 0 0  

- - 5 0 0 0  

- - 1 0 0 0 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 

0 1 5  3 0  4 5  6 0  7 5  9 0  

A 

Fig.7.F~r~tingresu~ts~free~rd~st~tingfr~mt~ediff~rent~nsandusingthem~de~(p~d~q)=(2~3~). 



220  

T A B L E  1 

P a r a m e t e r  v a l u e s  o f  t w o  A R I M A  m o d e l s  f o r  r e c o r d  1 

A R I M A  (5, 3, 0)  A R I M A  (2, 3, 1) 

#, 0 + 0 

1 - 1 . 6 4 1 9 1  - - 0 . 9 2 5 9 8  0 . 8 5 1 7 0  

2 - 1 .61439  - - 0 . 4 4 5 4 7  - 

3 - 1 .20966  - - - 

4 - 0 . 8 5 9 8 1  - - - 

5 - 0 . 3 7 6 8 3  - - - 

% 514 .6  5 0 6 . 4  

A I C  1326 .24  1321 .87  

S B C  1338 .51  1 3 2 9 . 2 4  

where the parameters take on the relevant values of Table 1. In order to gain more insight into 
the nature of the model it is instructive to expand the compact  form operators of eqn. (8) and 
rewrite it in full: 

N a = (3 + ~ l ) N a _ l  + ( - 3  - 3q~ 1 + q~2)Na_2 + (1 + 3q~ 1 - 3 ~ 2 ) N a _  3 

+ ( - t ~ l  + 3dP2)Na_4-dP2Na_ 5 + Ua--OlUa_l (9) 

Upon substitution of the numerical values of the constants for record 1, eqn. (9) yields: 

N~ = 2.07402N~_ 1 - 0.66753N~_ 2 - 0.44153N~_ 3 - 0.41043Na_ 4 

+ 0.44547Na_ s + u a - 0.85170u~_1 (10) 

This equation shows that the current N a can be expressed as a linear combinat ion of its previous 
five values and of the random deviates of the present and the previous step. The relative weight 
of each contributor seems to diminish when moving further into the past. 

4. MODEL BUILDING--SAMPLE FUNCTION SET 

It is evident that equations similar to eqns. (8)-(10) can be obtained for every single record of 
Fig. 2. At this point one could construct histograms of the parameters ~1, q~2, 01 and claim that 
in this manner  the whole set of experimental curves (68) can be represented by the A R I M A  
(2, 3, 1) model, where the coefficients will be random variables [19]. While this approach yields 
good results, it is demonstrated below that the so-called seasonal or multiplicative time series can 
offer a unique tool for data reduction, with particular bearing to the real time monitoring and 
prediction of crack propagation. 

The plume-like appearance of the curves of Fig. 2 can be modified, and they can be seen as 
one long series consisting of 68 successive curves on the A-axis, as shown in Fig. 8a. Clearly, now 
1 ~< A ~< 89 refers to record 1; 90 ~< A ~< 178 refers to record 2; and so on. Under  this perspective, 
it is amply revealed that similarities occur every 89 crack intervals and thus this series exhibits 
periodic behavior with period s = 89. In this type of series one expects relationships to exist (i) 
between observations of successive number  of cycles in a particular record (the previously 
tackled problem); and (ii) between observations for the same crack size in successive records. 
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crack size; and (d) crack size. 

Starting from the ARIMA model of eqn. (5), it can be deduced [16] that a seasonal series can be 
mathematically represented by the general multiplicative model 

4p( B)~Pe( BS) V d vDNa = Oq( B)OQ( BS)uA (11) 

In this equation the parameters p, d, q and the operators Cp(B) and Oq(B) are exactly as 
those defined for eqn. (5) and refer to the afore-discussed point (i), while ~7~ = 1 - Bfl dPe(B ~) 
and OQ(B ~) are proper polynomials in B s of degrees P and Q, respectively, representing 
relationships of point (ii) above. This multiplicative process is said to be of order (p ,  d, q) × 
(P,  D,Q)~. 

The building of the model for the specific physical problem follows again the same steps: 
identification, estimation, diagnostic checking. Guided by the experience gained when working 
with a single record, it is expected that the values of d and D should be searched, respectively, in 
the intervals [1-3] and [0-1]. Indeed, as seen in Fig. 8d, when d = 2 and D = 1 a nice stationary 
looking signal is retrieved. It is clarified that this last plot results after three differences: the first 
with respect to record (D  x s = 1 × 89 = 89) produces ~789NA (Fig. 8b); the second with respect 
to crack size produces V~g89NA (Fig. 8c); the third with respect to crack size again produces 
x7 2V89N ~ (Fig. 8d). The stationarity characteristics of this signal are definitely superior to those 
of the single record, Fig. 3d. This fact is, of course, due to the signal's new length after having 
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changed our viewpoint. It is expected that this matter  will have a favorable effect on the order of 
the seasonal model to be selected. 

The autocorrelation function of X7 2v89NA, shown in Fig. 9, exhibits all proper characteristics: 
it initially dies out exponentially, shows a substantial correlation at lag 89, dies out anew, shows 
a smaller correlation at lag 178, and so on. In the process of the parameter  estimation, values 
smaller than before for the p and q are tried out, and P and Q are not  expected to be greater 
than unity. P = 0 or P = 1 means (when D = 1) that the seasonal model of eqn. (11) will include 
information from the previous record or, from the two previous records, respectively. 

In fact, running several tests, it is seen that the model with p = 1, q = 1, P = 1, Q = 1 shows 
good forecasting capabilities. Having used the first four records, an excellent forecast is obtained 
to the end of the fourth record even when departing from an early origin within it, Fig. 10a. 
Equally satisfactory is the performance of the more parsimonious model  with p = 1, q = 1, P = 
0, Q - - 1 ,  Fig. 10b. These latter parameter  values are also checked and found to satisfy the 
requirements of the other supplementary criteria (AIC, SBC). On these grounds it is concluded 
that the multiplicative model of eqn. (11) of order (1, 2, 1) x (0, 1, 1 ) 8 9  c a n  efficiently represent 
the physical phenomenon of crack propagation as represented by the curves of Fig. 2. 

The analytical expression of the proposed model is explicitly 

(1 - ~1 B) ~ 2  V89N A = (1 - OlB)(1 - -  O1B89)UA (12) 

or, in its expanded form 

N A = (2 + qh)NA_l - (1 + 2qh)NA_ 2 + qhNA_3 

4- NA_89 - -  (2 + 4,1)NA_9o + (1 + 2~,)NA-91 - -  eP,NA-92 (13) 

+ UA -- OlUA--I --  OlUA--89 + OlOlUA--90 

Equation (13) indicates which are the contributors to the formation of the current value of N a. 
There clearly participate the current record (with 3 terms), the previous record (with 4 terms), the 
current noise (with 2 terms) and the noise from the previous record (with 2 terms). As a general 
rule, it is expected again that the relative weight of each contributor will decrease as one moves 
into the past of a record and into the preceding one. 
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Fig. 10. Forecasting of the fourth record, using the multiplicative model (1, 2, 1)x (1,1, 1)89, and (1, 2, 1)x (0, 1, 1)89, 
respectively. 

Equation (13), as it stands above, can reproduce effectively the sequence of crack histories, 
which have been used for its parameter estimation. However, it must be noted that when 
forecasting a crack behavior, it is not expected on physical grounds that the values (N, a) of a 
new specimen would depend in some preferential manner on the values (N, a) of the im- 
mediately previous tested specimen. On the contrary, the order of considering the specimens 
should play no role at all. For this reason, it seems a lot more rational that the "previous" record 
in eqn. (13) be replaced by the "average curve" of all available records. Furthermore, the 
parameter values should also result independent of the records' order. For the data set under 
consideration, Fig. 11 shows how these parameters vary with respect to the number of records 
considered. It is observed that as the number of records increases, the parameters converge to 
some limiting values. For all 68 curves, these a r e  ~b 1 = 0 . 0 8 5 4 4 ,  01 = 0.99999 -- 1 and O 1 ~-- 0.65878, 
while o u = 1861. 

Illustrating these last points and the new interpretation of eqn. (13), one more test is carried 
out demonstrating the performance of the model when monitoring and forecasting the outcome 
of an experiment. Suppose, for example, that a new specimen is tested and that its crack history 
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curve, denoted as "next",  is as shown in Fig. 12a, which is chosen to be identical to that of 
specimen 64 of Fig. 1. Clearly, this curve is situated away from the average curve (denoted as 
"mean"),  and it represents a rather extreme case. It is intended to predict this crack's behavior 
via the model of eqn. (12) as established above for the 68 curves of Fig. 2. 

Fig. 12b shows an a priori forecasting of the full curve (i.e., origin at A = 6142, corresponding 
to a = 9 mm, and lead equal to l = 89), along with the 95% Gaussian probability limits on each 
side. Naturally, this prediction falls very close to the average curve of Fig. 1. Figures 12c and 12d 
show the same forecasting, where some of the actual measurements (N, a) for the experiment 
have gradually been incorporated (5%, 20% of the measurements, respectively). It is seen that as 
more and more actual data keep coming in, the forecasted curve moves closer to the real one. 
The 95% probability interval also becomes narrower. In conclusion, an initially remote forecast 
can be continuously updated and, as the lead shortens, greater accuracy can be achieved. This 
matter can have important consequences for real components or structures containing cracks 
operating under similar conditions to specimens for which a model like that of eqn. (12) is 
available. 

Thus we see that the simple model of eqn. (12), containing only three parameters, reproduces 
and forecasts the crack growth curves surprisingly well. Its potentiality is due to its capability to 
assimilate efficiently the pattern of evolution of the physical process from the previous records, 
and to utilize effectively any new acquired information. For the model to be operative, the 
knowledge of at least 92 values of N (that is, the average record plus 3 points of the new test) is 
required. It is recalled that the model of eqn. (8) for the single record required only the 
knowledge of the five previous values of N. 

5. CONCLUSIONS 

Autoregressive integrated moving-average processes have been employed for the modeling of 
the number of cycles over the crack size for the fatigue crack propagation phenomenon.  Even 
though no perfect stationarity conditions have been obtained in the treatment of the Virkler 
records, an overall good preformance of the derived models has been observed. It has been found 
that a single record can be reproduced satisfactorily by an ARIMA process of order (p ,  d, q) = 
(2, 3, 1). The quality of the forecasts depends upon the origin; an early origin allows for short 
forecasts while a later origin yields unconditionally good forecasts. A multiplicative ARIMA 
process of order (p ,  d, q) x (P,  D, Q)s = (1, 2, 1) x (0, 1, 1)8 9 has been found to represent very 
efficiently the whole set of the fatigue crack records. Its forecasting capabilities are excellent both 
at reproducing existing data, and at the monitoring and prediction of new experiments. 

It can therefore be claimed that quite efficient models for the fatigue crack growth phenome- 
non have been constructed. In addition, they have the advantage of being compact, easily 
presentable and implementable. They can thus serve in practical situations, as they can readily 
furnish updated predictions of a component 's  residual lifetime after periodic inspections. 

Every such model is built based on the primary form of information of the crack growth, i.e. 
the (N, a) sample functions, and consequently is suitable for a specific set of geometric and 
loading conditions. The possibility of utilizing the same model under different conditions, or of 
attaching physical significance to its parameters, remains, of course, to be investigated. Towards 
this direction, the approach suggested by the authors of Refs. [14,20] for their phenomenological 
FCG model can be worth following. Finally, it is noted that the performance of the models may 
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be improved (at the expense of their simplicity) by introducing some nonlinear transformation of 
the data [21], which would produce closer to stationarity conditions after differencing, or by 
employing schemes of ARMA algorithms [22-24] especially devised for nonstationary processes. 
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