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Adaptive Filtering Algorithms and Target Tracking

D.G. LAINIOTIS, V.C. MOUSSAS

School of Engineering

Department of Computer Engineering
University of Patras

26500 Patras, GREECE

ABSTRACT

Two forms of the Adaptive Lainiotis Filter (ALF) are analysed and compared to
the commonly used Extended Kalman Filter (EKF), with respect to performance,
computational and storage reguirements and convergence. The above non-linear
filters are applied to the target tracking and their specific performances are
studied. Specifically, the filters are implemented for the manoeuvering target
tracking problem, and their estimation errors and convergence, as well as the
computational requirements (operation counts) and storage requirements (memory)
for all three algorithms, are investigated and analysed, over a variety of
tracking schemes and multisensor problems. Finally, useful conclusions are
drawn on the relative merits of the above non-linear filtering algorithms
through a comparative analysis and extensive Monte Carlo simulations.

KEYWORD S

Rdaptive filtering, parameter identification, parallel processing, tracking,
non-linear filtering.

I. INTRODUCTION

Estimation algorithms are widely applied in a variety of linear and non-linear
problems. The design of these algorithms (estimators) necessitates the avail-—
ability of a mathematical model which represents the underlying "physical"®
situation. ) _

Unfortunately, in most physical situations, complete knowledge of the model is
neither usually available, nor readily forthcoming. If, moreover, the estimator
design is to be done in real time, it constitutes an adaptive estimation pro-
blem. The most basic adaptive estimation problem consists of linear models with
parametric uncertainty, described by the following model equations:

g—zéi=F(t,8)-x(t) — (1)
z(t) = H(£,0)-x(t) + v (t) (2)

where x(t) and z(t) are the n- and m-dimensional state and measurement processes,
respectively, {u(t)} and {v(t)} are the input and measurement noise random
processes which, conditioned on 6, are independent zero-mean white-Gaussian
processes with covariarces Q(t,8) and R(t), respectively. The initial state
vector x(tgy) = x5 is independent of {u(t)} and {v(t} , and has a 6-conditional
Gaussian density P(ty,/8) with mean X(t,/t,,®) and covariance P(tg,ty/9) .




= B -

The above model is specified up to a cet of unknown parameters, denoted by the
vector 0. The parameter vector 9 is considered a random variable with known a
priori probability density function F{t/ty) = P(0). The obvious approach to the
solution of the above problem is to augment the state-vector with 9, namely

o (t) = [xT(t) :0T] T. Thus the model defining equations become the non-linear ecua-—
tions:
dx (t)
— — = D (. t] + g,k (0), 5] -u(e) (3)
At ‘p& XO'J( /¢ C ':]'& !‘XOE. rTlt )
z(t) = haixa(t),tl + v (t) (4)
Is m il b
where: 0o xg () t] =T () FT (£, 0) 1]
ST
9o g (£),t] =[6T(x,8) : 0]
and hy [xg (), €] = m(£,0)-x(t)

The desired state estimate is then given by i(t/t,tg) = [I:ﬂ]-xu(t/t,tg).

To obtain the state estimate we have to use a non-linear filter Llike Extended
Kalman Filter [1], or utilize the partitioning approach, introduced by
Lainiotis [2,31].

In this paper, two partitioned algorithms are presented and studied, the
Adaptive Lainiotis Filter and the Linear Lainiotis Per-Step Partitioning
Filtering Algorithm, in comparison with the commonly used Extended Kalman
Filter. The two filters ALF and EKF are applied on the target tracking and ma-
noeuver detection problem, where the time constraints of a real-time applica-
tion are tight. The use of parallel processors to implement the partitioned
algorithms has been considered in order to show the merits of the partitioning
approach as the recently developed parallel machines make it possible to work
faster for a parallel algorithm with high computational burden than for a less
complicated sequential algorithm.

IT. PARTITIONED ALGORITHMS

A) Adaptive Lainiotis Filter (ALF). The ALF is presented explicitly in [2,3].
This estimator is decomposable into two parts. One linear part consisting of

linear filters matched to each admissible value of the unknown parameter 0, and
a non-linear part, consisting of likelihcod ratios, that incorporates the adap-

tive, learning or system identifying nature of the estimator. The equations of
the filter follow:

lpz(k/k—irS) |_1/2exp [—é” .;(}‘1/}{“1,6) HZ P—-l {k/k_j_'e)]
o 4 3 - p(6/k-1)

=

fp(e/k—i)]pz(k/k—l,e)|"1/2exp{~ |{E(k/k—l;e)|]2P;1(k/k-1,e)]de

D

(6)
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4V
where z(k/k-1,08) = z(k) - H(k,0) - =x(k/k,80) (6a)

and P, (k/k=1,0) = H(k,8)P(k/k,6)H (k,8) + R(k) (6b)

The parameter—conditional estimate %(k/k- 1,8) and the corresponding error-
covariance matrix P(k/k-1,6) are given by the linear filter (e.g. Kalman)

matched to the system with parameter value 6.

The linear filters that constitute the nonadaptive part of the ALF can be Kalman
filters, as well as the Linear Lainiotis Per-Step Partitioning Filtering Algo-
rithms depending on the application. The two algorithms, the ALF with Kalman
filters (ALF (k)), and the ALF with the linear Lainioctis algerithms (ALF (L)), have
the same performance but as we will see different computational requirements.

B) Lainiotis Per—Step Partitioning Filtering Algorithm (LPSPFA). The LFPSPFA

is a realization of the optimal MSE estimator different than the Kalman fil-
ter realization with theoretically the same performance as the Kalman filter.
However, the actual performance need not be the same.

The Lainiotis filtering equations follow (time-invariant case):

X(k+1/k+1) = xp (kt1/k+1) + 0 P(k/k+1) M, (k+1) + P~ 1(k,0)% (k/k)] (7)
1,0) = a (
P(kt1,0) =P, +0P(k/k+1)0 (8)
P(k/k+1) = [p(k, 000, +1] 1 B (X, 0) (9)
and 0, = ¢ThanTs (10)
P = [1-x n"lygy® (11)
o, = lr-x,nTl¢ (12)
K, = YqyTha (13)
A= [nTyqyT n+r] "} (14)
K = o'ha (15)
M (k+1) = Kz (k+1) (16)
§n(k+1/k+1) = K,z (k+1) 619

where P(k,f) corresponds to P(k/k) of the Kalman filter.

As one can see, equations (10) through (15) can be calculated only once at the
beginning, and so the computational burden of the filter per iteration is re-

duced. Of course, this also means a need of more memory for storing the calcu-
lated quantities.

In the following chapters we will make 2 comparative analysis of two forms of
the ALF (one using Kalman filters — ALT/"), and the other using LPSPFA - ALF(L))
and the Extended Kalman Filter (EKF).

e TR P AT £ 54 4 Tk T



ITI. COMPUTATIONAL ANALYSIS

Apart from the performance of the algerithms it is of great interest to analyse
their computational requirements. This includes both the storage requirements
and the operations involved.

The parameters of the general analysis are the dimensicn n of the state vector,
the dimension m of the measurement vector, the number of linear filters s in
the adaptive filter, and the dimension p of the input vector u(:) if it is not
equal to n. The results of this analysis can be found in general forms, in
Table I for the storage requirements and in Table II for the operations in-
volved. The analysis is based on the assumptions given in [4] and also used in
[5].

As we can see in Figures 1 and 2, the use of Kalman filter or Lainiotis linear
filter (LPSPFA) affects the computational characteristics of the Adaptive
Lainiotis Filter. The choice of the linear filter depends on the specific appli-
cation and its reguirements.

Parallelism: If we consider the use of a parallel machine for the implementation
of the ALF, the computational characteristics of the filter are changing. This
filter is naturally structured for parallel processing, so even if the total
computational burden is the same, the filter's time consumption is dependent
only on the longest sequentially processed part of the filter. This can be as
long as a Kalman filter. We have then new general forms for the case of parallel
processing in Table III for the operations involved. From the part of sterage
reguirements the Table I equations are still valid. The difference between using
or not parallel processing for the ALF is concentrated on the time requirements
of the filter and can be seen clearly in Figure 3,

The detailed analysis of the EKF and ALF algorithms is presented in Appendix A.

IV. MODEL EQUATIONS

The target tracking problem is still challenging system engineers. The manoeuver
detection is the most important part of the trajectory estimation problem. Up to
now, two approaches to this problem are providing more accurate state estimates
[6]. The "State Augmentation" and the "Multiple Model Estimator". The first
method produces a non-linear model and uses an EKF to estimate the augmented
state vector. The second method uses an ALF with two linear filters matched to a
manoeuvering and to a non-manceuvering dynamic model, respectively. This method
has the advantages of the first method and of other approaches but at a cost of
a much larger computational burden. If the processing is sequential, this com-
putational complexity is a disadvantage for the ALF due to the time limits of a
real-time application. But the ALF is suitable for parallel processing and if

we use this merit, it works even faster than the EKF.

The model we will use is presented by Singer [7] and most of the researchers
used it in a more or less simplified form.

The equations of the model are:

x(k+1) = 2(T,0)-x(k}) + u(k) (18)
z(k) = Hex(k) + v(k) (19)

where H = [100], v(k) and u(k) have variances U; and Q(k),




1 T — [-1+qgT+ e_uT
oA
o(T,x) = |0 1 Loy -
ol
0 0 e &
and T5/20 T4/8 T3/6
o(k) = 2<:ch‘?‘1 T4/8 T3/3 T2/2
:
_T3/6 T2/2 T !

The sampling rate T of the radar
vector is

target
target
target

P
x (k) P
p

There are two parameters in the mode, o and Op- The parameter a is the recipro-
cal of the manceuver time constant. For example, o v 1/60 for a lazy term and
A 1 for atmospheric turbulence. The parameter 0% is the variance of the target
acceleration and represents the type of the target we are tracking.

To apply the ALF, the model is ready and we only have to choose the parameter
values for each linear filter but, for the application of the EKF we have to
augment the state vector with the parameters, in order to estimate their values.

So the new state vector is Xq (k)
equations are:

xo (k+1) = @ (T, x

¢

z(k) = hy-x (k) +

where h, = [100001], the
Q) |

qk) = L g

o , O

and the transition matrix is

(o (k) + P k) -T +p(k) (~1+a(k)-T+e 2Ty /52 137
Plk) +5 ) - (1-e 25T /5 )
o (Trx (k) = |pk)-e 2&)T
a (k)
o2 (k) 1

is small enocugh (e.g. T=0.1), and the state

position at time k
speed at time k
acceleration at time k

= [otkyé(k)f.a(k)u(k)om<k)}T and the model

(k)) + u, (k)

o
v (k)

variance of u, is

0
0

Now the dimensionality of the problews is increased, and also the computational

burden.
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V. SIMULATION RESULTS

An example is presented, illustrating how the two non-linear filters are esti-
mating the target state ang identify the parameter a. For simplicity we present
one cartesian coordinate, but the results are similar for the others also.

For the scenario considered, the target moves at 900 ft/sec at a distance of
20,000 ft, and suddenly accelerates. The radar data rate is 10 samples per
second and the sensor noise is Or = 200 ft. The average time constant of the
manoceuver class used in the scenario is 10 seconds (a = 0.1).

The ALF has three linear filters (s = 3) and the second filter matches the
target characteristics. The gxF has a state dimensionality of 4 instead of 3, or
5 (depending on how many parameters we identify, one (a) or two (2, om)) .

The normalized errors (%) of the two filters are presented in Figures 4 to 7
for the position, velocity, acceleration error and the identification of para—
meter a error. Also, the a posteriori probability density functions of the
three linear filters of AIF ang the acceleration of the model are shown in
Figures 8 and 9. All the results are obtained after 100 Monte Carlo runs.

In Table IV the Mean Square Error is presented for ALF and EKF for different
stages of the example, to show the different behaviour of the two filters.

The computational requirements of the filters for this example are presented

in Table V. In a more general case, when we use more sensors, the dimension of
the measurement vector m isg augmented. In Figures 10 to 12 the Cperational
requirements of the filters AIF and EKF are presented for different values of m.

VI. CONCLUSIONS

In this paper the Adaptive Lainiotis Filter is studied theoretically and . through
computer simulations. Two forms of this algorithm, one using Kalman filters and
a second with Lainiotis Per—Step Partitioned Filtering Algorithms are compared
with the Extended Kalman Filter. As shown, the computational,complexity of the
ALF is greater, but in identification_problems may work faster than the EKF.

The advantages of AIF in convergence and estimation errors are clearly presented
via simulations. Considering also the parallel machines that are lately avail-
able, it makes clear that the ALF is not only more accurate but also more

time~efficient than the non-linear EKF, especially in multisensor and parameter
identification problems.
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TABLE I
Filter Operation
, 2 2
EXF 0.5n% +2.5n+ 0.5m% + 1.5m + 0.5P2 + 0.5P + 2max (n2, mm) +max (2o, 2 =)
ATF (K) O.5m2+2.5m+n+s'(2+0.5n2-1-l-5n) +s-(2n2+2n+nm+0.5m2+1.5m) +
24
+ 0.5m2 + 2nm + 0. 5m +max[m2m,n2}
P 0.5m2 + 2.5m+n+ s (2+0.5n2 + 1.5n) + s~ (3.5n2 + 2.50 + 3nm + 0.5m2 + 1.5m) +
+ n2+n+0.5m2+1_5m
TABLE II
MULTS  1.5n3 +0.5n2+ 0.5m3 + 1.5m% -m + 1.5n%n + 1.5mm? + 2rm + np2 +
+ '0.5n2p+0.5np
EgE ADDS 1.5n3 -n? - 0.5n+ 0.5m3 + 0.5m + 1.5n2m+1.5nm2+np2+0.5n2p
- 0.5np
DIVS,SR 2m-1,m
MULTS  s- (0.5m3 +2.5m2 +n+3 +1.5n° + 1.5n2 4+ 0.5m3 + 1.5m2 — m +
+ 1.5n2'm+1.5nm2+3nm)
ALF (k) ADDS s+ (1.5m3 +m? - 0.5m+n+1.5n3 + 0.512 —n + 0.5m3 - 0.5m +
+ 1.5n2m+1.5nm2~1-nm)' - n-1
DIVS,SR s- (4m+1), s-(2m+1)
MULTS  s- (0.5m° +2.5m2 +n+3 +2.5n3 +5.5n2 - 2n + 2nm)
ALF (L) ADDS s+ (1.5m° +m® - 0.5m+n+2.5n3 + 202 - 2,50 4 2mm) - n—1

DIVS,SR s- (2m+4n), s (2n+m+1)
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TABLE III
ALF (k) max{A, Kalman}
ALF(L) max{A, LPSPFA}
MULTS $(0.5m3 + 2.5m2 + n + 3)
A ADDS s(1.5m3 + m2 - 0.5m + n) - n-1
DIVS, SR s(2m+2), s(m+1)
MULTS 1.503 + 1.502 + 0.5m3 + 1.5m2 - m + 1.5n2g + 1.5nm? + 3nm
KAIMAN  ADDS 1.5n3 + 0.5n2 - n + 0.5m3 - 0.5m + 1.5n2m + 1.5mm? + nm
DIVS, SR 2m-1, m
MULTS 2.5n3 + 5.5112 - 2n + 2mm
LPSPFA  ADDS 2.5n3 + 202 - 2.5n0 + 2m
DIV, SR 4n-2, 2n
TABLE IV
_— (PositionK Crie) 1~60 61-120  121-180 181-240 o ‘
A L.F. 115 11 124 42
200
E.K.F. 62 76 96 95
TABLE V
EKF Sequential Parallel proc.
NE = 4 NE = 5- ALF (k) ALF (L) ALF (k) ALF (L) J
Memory reg. (words) 63 83 142 203 142 203
Operations req. 778 1356 1607 2627

422 762 1




[1]
2]
31

(4]

[5]

[6]

(7]
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APPENDIX A

MEMORY AND OPERATIONS REQUIRED BY THE FILTERS

A) LINEAR FILTERS

The linear filter that we will use has been studied in detail in [4]. The gener
formulas present the requirements of the filters for each step (iteration). Sma
modifications have to be made, in order to make them suitable for the ALF.

Kalman filter: There is no change in the equations of this filter, but we need
to store the gquantity P, (k/k-1) for later use by the ALF. This augments the
memory required by: (m2+m)/2 memory words.

LPSPF algorithm: The two equations (6a) and (6b) are added to the filter equa-
tions in order to calculate the quantities Py (k/k-1) and z(k/k-1). The memory
required augments by: n2 +nm+m2 + 2 memory words, and the operations by:

nZ + mm + n2m + nm2/2 + nm/2 MULTS

n? - n + n2m + nm2/2 + nm/2 ADDS

B) NON-LINEAR FILTERS

1. EKF: The equations of Extended Kalman Filter [1] follow:

P(k/k-1) = F-P(k-1/k-1)-F* + G(k-1)-0-GT (k-1)
R(k) = P(k-1) -HT+ (B-P (k/k-1) - HT+R) ~ !
P(k/k) = P(k/k-1) - K(k) H"P(k/k-1)
2(k/k-1) = z(k) - h(k,£ (k% O=1/k=1) )}
X(k/k) = £(k,x(k-1/k-1)) + K(k)-2 (k/k-1)
The parameters involved are: n the x dimension, m the z dimension and P the

Q dimension. The calculation of the operations of the filter can be seen at
Table Al. The memory required to store the matrices and the results is:

2 2,
0.5n2-4-2.5n+0.5m2+1.5m+0.5(P2+P)+2max(nz,nm)-i-max{ﬂ'-:;'r—lrmzn1

) memory words.

2. ALF: The equations of Adaptive Lainiotis Filter are presented in Chapter II
(5) and (6). In the ALF the parameter s represents the number of the linear
filters that we have in the bank of filters. To calculate the requirements of
ALF, one has to calculate the requirements for the equatione (5) and (6), and
then add the requirements of the s linear filters.

The operations required for (5) and (6) are presented in detail in Table A2.
The memory required to store the matrices and the results is:

2
0.5m2-+2.5m-+n-+s{2-+n-+n 2]

The memory added by the s linear filters is:

s- (constant matrices storage) + temporary result storage

The results are in Table TI.
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The operations of the ALF are:

MULTS s(0.5m3 +2.5m% +n+3) + s-(filter's MULTS)

ADDS s(l-5m3-+m2-—0.5m-+n)—n—1-+s (Filter's ADDS)

DIVS s(2m+2) + s (Filter's DIVS)

SR s(m+1) + s (Filter's square roots)

EXP s
For the sequential case the results are in Table II. The calculation of the
total burden has been done under the assumption [4] that:

1 multiplication = 4 additions
1 division 6 additions
1 square root 25 additions

Parallel implementation: When we use parallel processing to implement the ALF
we need s+l processors. One for the eguations (5) and (6) and one for each of
the s linear filters.

The filter's time consumption depends on the computational burden of one of
the s+l processes and, of course, of the longest one.

To find the computational burden that affects the characteristics of the ALF
we have to calculate the maximum between the linear filter burden and the ALF
equations (5) and (6) burden. This is clearly presented in Table III.

The memory consumption does not change with the parallel processing.
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TABLE Al — EKF OPERATIONS
Variable Operation MULTS ADDS DIVS SI
G(k-1)-9 n-p? npz—np
G (k-1) -0-GT (k-1) (n?p+np) /2 (n?ptnp-n2-n) /2
$-P (k-1/k-1) n3 n3-n?
®-P (k-1/k-1) - 6T (n3+n?) /2 (n3-n) /2
P(k/k-1) ¢poT + GoGT (n+n) /2
Z(k/k=1)  z=h (k. (k,% (k-1/k-1)) ) m
Pltk) H-P (k/k-1) nZm n2m-nm
H-P (k/k-1)HT {nm2+nm)/2 (nm2+nm—m2—m)/2
H'P(k/k-1)-HT + R (m2+m) /2
(epHT+R) ~1 (m3+3m2-2m) /2 (m3-m) /2 2m-1
X (k) Py (k) - (HPHT+R) ~1 nm? nm?-nm
K(k) -2 (k/k-1) nm nm-n
x(k/K) (kX (k-1/k-1)+K (k) -2 (k/k-1) n
K(k)'Pi(k) (n2m+nm)/2 (n2m+nm—n2-n)/2
P(k/k)  P(k/k-1)-K(k)-P (k) (n24n) /2
TABLE A2 - ALF OPERATIONS
Variable Operation MULTS ADDS DIVS €
Pg(k/k-lre)-i -s'(m3+3m2—2m)/2 s-(m3~m)/2 s- (2m-1) =
|| By k/k-1,8) || 7172 8 5
Z(k/k=1,8)T-P_ (k/k-1,0)"1  s.m2 s (m2-m)
20c/k-1,0)T-2; . 3T (k/k-1,8) sem s (m-1)
2(k,0) IPZ|_1/2-exp(-§2-9;1/2)*) s s
=)
i£1 P(6,/k-1)-2(k,0,) s s-1
’ S
P(6;/k)  2(k,84)-P(8;/k-1)/] p-4 s 5
i=1
S
x (k/k) L x(k/k,04)P(8;/k) s-n n(s-1)

i=1

%*)s exp functions
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FIGURE 2
OPERATIONS REQUIRED by A.L.F.
Using KALMAN & LPSPFA Linear Filters
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FIGURE 3
OPERATIONS REQUIRED by A.L.F.(K)
Using SEQUENTIAL & PARALLEL Processing
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FIGURE 4
NORMALISED POSITION ERRORS of A.L.F & E.K.F. vs TIME
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FIGURE 5
NORMALISED VELOCITY ERRORS of A.L.F & E.K.I'. vs TIME
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FIGURE 6
NORMALISED ACCELERATION ERRORS of A.L.F & E.K.F. vs TIME
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FIGURE 7
PARAMETER A IDENTIFICATION ERROR vs TIME
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FIGURE 8
A POSTERIORI PROBABILITY DENSITY FUNCTIONS of A.L.F.
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FIGURE 9
ACCELERATION of the MODEL vs TIME
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FIGURE 10
MEMORY REQUIRED by A.L.F. & E.K.F.
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FIGURE 11
OPERATIONS REQUIRED by A.L.F. & E.K.F.
Using SEQUENTIAL Processing
40800 -
30000
b
= £haog
=
a A.L.F.(K)
S
10008 -
0

M DIMENSION of Z (Sensors)

N=3 S=3 NE=4

=~ BEE =

= BEE, =



- 360 -

P=UN €=S E=N

(s40suss) 7 3o NOISNIWIO W

e 9

fursseooa TATIVYVL Suisn
ANE R ATV A4 qTHINDTY SNOLLVIAJI0
¢l HdNDId

- 8BRS

- 8000 |

- 00RS|

- 0BG

SNOILVY3d0




