
MIND: A Nonparametric Decision Fusion Method
for Accurate Indoor Localization using Sensors with
Monotonically Increasing Error Functions

A nonparametric fusion method for extracting accurate

distance measurements from low-quality sensors is proposed.

The method applies to sensors with error functions that are

monotonically increasing with respect to (w.r.t.) the actual value

to be measured (arguments are presented on why a monotonically

increasing error function is something to be expected with

range-estimating sensors). The proposed method has been

developed in order to enhance the performance of localization

systems that utilize commercially available sensors for range

estimation to achieve localization through triangulation of

range estimates. The proposed method is based on evaluating

multiple sensor measurements and using the minimum measured

distance as a more efficient estimate of the real distance compared

with calculating and selecting the distance average. Thus,

the proposed method is code-named MIND (from MINimum

Distance). It is shown analytically that MIND outperforms,

in terms of location estimation accuracy, the sensor with the

minimum mean error when used in a multi-sensor configuration.

An experimental testbed consisting of four Cricket sensors in

a symmetric bundle configuration was used to evaluate the

MIND fusion method experimentally. For each Cricket sensor,

performance characteristics were established through extensive

laboratory analysis and were found to yield highly inaccurate

range estimates. However, when these low-quality Cricket sensors

were fused in a four-sensor symmetric configuration, it was

shown experimentally that the MIND fusion method exhibits

near-optimal performance and largely overcomes most of the

flaws of the underlying low-quality Cricket sensors, delivering

a localization solution of extended accuracy, availability, and

robustness.
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I. INTRODUCTION

In this paper we propose a simple yet accurate
fusion method in order to enhance the performance
of an underlying localization testbed. The proposed
nonparametric method is capable of extracting

accurate range measurements from low-quality
sensors. For a nonparametric estimator, knowledge
of the underlying statistics is not required for
determining the functional parameters of the estimator,
and performance is shown to be efficient in an

asymptotic way (e.g. as the number of samples
exceeds a certain threshold, or approaches infinity)
[1—2]. Provided that the data statistics are perfectly
known, an optimal data fusion scheme may be applied

to improve the performance of a multi-sensor bundle
in terms of location accuracy in accordance with the
Optimal Sensor Fusion theory [3—6]. Alternatively,
improvement in the accuracy of range estimation
and localization can be achieved with the use of

Kalman [7—8] or particle [9—10] filters. However,
a priori knowledge of the probability distribution
functions (pdfs) required for implementing an
optimal fusion scheme may not be readily available
and/or may be too time consuming to acquire and

computationally expensive to process, in particular in
real-time applications and low-cost solutions. Instead,
a suboptimal heuristic decision fusion scheme, such
as the one proposed herein, may provide a data fusion
solution that is relatively easy to implement, yet robust

and efficient in terms of performance.
The proposed minimum distance (MIND)

method is based on evaluating multiple sensor
measurements and using the minimum (measured)
distance as a more efficient estimate of the actual

distance compared with calculating and selecting
the distance average. Furthermore, it is analytically
proven that MIND yields more accurate results than
the sensor with the minimum mean error, while
exhibiting nearly optimal empirical performance,

albeit being suboptimal. Granted that range sensors
commonly exhibit monotonically increasing error
characteristic with respect to (w.r.t.) the true distance,
the proposed technique may be used in a wide range
of applications. To the best of our knowledge, the

approach of selecting the minimum distance among
the measured distance from multiple sensors has not
been proposed in the literature as a decision fusion
rule for sensors with monotonically increasing errors.
In the context of developing a real-time

localization system, we performed an extensive
analysis of a set of low-quality, off-the-shelf, range
estimation Cricket sensors [11—12] that are frequently
used in commercially available localization systems,
and we established a model of the sensor performance

characteristics. The Cricket sensors were found
to deliver highly inaccurate range measurements,
resulting in a localization system of poor efficiency
and accuracy. When the proposed MIND method was
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applied in a multiple-sensor receiving array (Cricket
bundle), the range estimation accuracy was drastically
improved, overcoming most flaws of a single-sensor
system. Furthermore, it is experimentally shown that
the proposed method improves both the accuracy
and the robustness of the localization system. To the
best of our knowledge, this is the first reference to a
multi-sensor fusion system with an array of Crickets
that has been made in the open literature.

II. MOTIVATION

1) Monotonically Increasing Distance-Measuring
Error with respect to True Distance in a set of

Off-the-Shelf Range Estimation Sensors: The
commercially available Cricket localization system
consists of a number of wireless nodes (the so-called
“crickets”), which are set to act as either beacons
or listeners [11—12]. The most common way to use
the Cricket system is to attach beacons on a free
line-of-sight (LOS) spot, like on a room’s ceiling,
and use them as static nodes acting as anchored
reference points. Beacons will periodically transmit an
ultrasonic pulse, together with an RF pulse bearing a
beacon identifier, a time stamp, and other useful data.
On the other hand, listeners are typically attached
to fixed or mobile objects that are to be localized.
They capture beacon transmissions and calculate their
distance to nearby beacons using the time-of-arrival
(TOA) difference between RF and ultrasonic pulses.
The distances to nearby beacons may then be used in
order to calculate the listener’s position coordinates by
triangulation [13].
In order to evaluate the Cricket sensors range

estimation performance, a simple testbed was set
up as illustrated in Fig. 1. The beacon and listener
are placed parallel to each other at preselected
distances and misalignment angles. The misalignment
angle, denoted by Áj , is defined to be 0

± when the
beacon and listener face each other directly and
varies from 0± to 180±, with a step of 10±. The true
distance-to-beacon (DTB), denoted by xi, varies from
20 cm, to 1 m, to 2 m, to 3 m, and finally to 4 m. For
any given (xi,Áj) the corresponding measurements are
denoted by

yi,j(t) = f(xi,Áj , t) (1)

where f(:) is a (generally nonlinear) stochastic
process with parameters xi, Áj , and corresponds to the
underlying mechanisms of the sensor measurement.
The temporal average of these measurements is given
by

yi,j =
1

T

TX
t=1

yi,j(t) =
1

T

TX
t=1

f(xi,Áj , t) (2)

where T denotes the observation period (temporal
sample size). In our analysis herein we assume that
xi and Áj remain constant throughout the observation
period T (static case) so that time averaging is
meaningful as a means of smoothing out noise.

Fig. 1. Cricket sensor performance testbed, using one beacon,

one listener, and a serial-to-bluetooth adapter.

Fig. 2. Average measured versus true beacon-listener distance for

a sample size of 80, Á= 0±.

Fig. 2 displays the average yi versus xi for

a sample size equal to 80, with misalignment

angle equal to Á= 0± and various beacon-listener
couples (since Á= 0±, yi,j reduces to yi). Since the
measurement yi is a random variable, the sample

size theoretically affects the average output of the

sensors; however, the pattern of the average yi
variation remains unaffected. It is observed that there

is a monotonically increasing error between yi and

xi, with the respective plots being almost identical,

linear, and retaining a constant slope (equal to tanμ as

illustrated in Fig. 2) for all different beacon-listener

node combinations.

DEFINITION A sensor is called monotonic in the

mean if the average estimation error is monotonically

increasing w.r.t. true distance (as in Fig. 2 for

example). More specifically, in the case of range

estimation sensors, a monotonic in the mean sensor

will exhibit an average distance estimation error that is

monotonically increasing w.r.t. the actual distance that

is being measured.
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Fig. 3. Average measured DTB error versus true distance xi and

misalignment angle Áj .

Fig. 4. PDF of range measurements for actual beacon-listener distance equal to (a) xi = 240 cm, (b) xi = 180 cm, respectively.

In Fig. 3, yi,j = yi,j(xi,Áj)¡ yi(xi,0) versus the
misalignment angle Áj is plotted for the Cricket

sensors for various xis. It is pointed out that the xi
estimation error increases with transmitter-receiver

distance and misalignment angle. Furthermore, it

is observed that for some beacon-listener distances

the ultrasonic pulse received signal strength (RSS)

drops under the receiver sensitivity for misalignment

angles larger than a specific value, e.g. for xi = 2 m

no measurements could be obtained for Áj > 100
±.

Also, an indirect conclusion drawn by Fig. 3 is that

the estimation error increases monotonically w.r.t.

distance even for sensors at different altitudes, since a

different altitude essentially corresponds to a different

beacon-listener misalignment angle.

Finally, Fig. 4(a) illustrates the empirical pdf of

a sample of 100 range measurements from a Cricket

sensor for a real beacon-listener distance equal to
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xi = 240 cm. The specific case is presented in order

to demonstrate the random nature of the Cricket

range measurements; however, for most real distances

the variance of measurements is not so large, as

can be deduced from Fig. 4(b) which illustrates

the empirical pdf of 100 range measurements

for a real beacon-listener distance equal to xi =

180 cm.

Based on the above measurements, it is considered

that the Cricket range estimation sensors produce

a monotonically increasing error w.r.t. the actual

distance as well as with the misalignment angle.

Based on this observation, we develop next a

method for extracting accurate measurements from

low-quality sensors which is suitable for the entire

class of monotonic error sensors, i.e., sensors that

are monotonic in the mean w.r.t. real distance and

misalignment angle. In the following paragraph,

it is justified that this type of error is expected in

range estimation sensors; therefore, the proposed

method is in general suitable for range estimation

applications.

2) Justification of the Monotonicity of the Error

in Range Estimation Sensors: The increasing error

between yi and xi is expected, since an increasing

xi causes a decreasing RSS, which in turn causes

higher detection circuits’ response time [11], resulting

in an increasing positive error. The error between

yi and xi may be due to other factors as well, e.g.

environmental factors, such as air humidity, pressure,

and temperature; hardware factors, such as timing

and arithmetic quantization; or errors in detecting

ultrasonic signals and variable RF-triggered interrupt

service routine delays, all of which cause increasing

errors with decreasing RSS. On the other hand,

non-line-of-sight (NLOS) and multipath propagation

are well known to be major error sources in range

estimation and wireless location systems [14],

while both multipath and NLOS propagation are

becoming more severe for increasing distances [15].

Indeed, increased distance or angle of misalignment

involve stronger multipath effects due, among

others, to the degeneration of LOS (Ricean model)

channels to NLOS ones (Rayleigh model) [15],

which in turn cause increasing errors in range

measurements.

Insofar as the Cricket sensors are concerned, the

sensors’ ultrasonic radiation patterns are directional

and consist of one main beam lobe at Á= 0±, with a
3 dB-beamwidth of about 90± and relative sidelobe
level remaining under 20 dB [16]. Therefore, the RSS

as well as transmitter and receiver sensitivity drop

along directions different than Á= 0±, resulting in
monotonically increasing errors with misalignment.

Hence, regardless of xi, the most reliable DTB

measurements are the ones corresponding to Á= 0±.
This impact is in general expected in sensors with

directional beam patterns.

III. MIND FUNCTIONALITY AND PERFORMANCE

Since a low-quality sensor could yield large errors

on yi measurements, a bundle of colocated range

estimation sensors may be used to extract more

accurate measurements and thus location estimates.

Each one of the N homogeneous and error-monotonic

sensors delivers a DTB measurement, namely yk,i, k =

1,2, : : : ,N, while the mean yk,i over time is denoted by

yk,i. Correspondingly, the instantaneous measurement

error is denoted by ek,i = jyk,i¡ xij, while the mean
measurement error is denoted by ek,i = jyk,i¡ xij.
With the proposed MIND approach, all sensors

measure their distance w.r.t. the beacon, and the

smallest among all measurements is selected as the

DTB estimate. The MIND scheme is found to offer a

range estimate that is better, or at least as good as, the

one achieved by selecting the “best” sensor.

DEFINITION The best sensor is defined herein to be

the sensor which corresponds to the smallest mean

error among all sensors of the bundle.

Indeed, it is easy to show that, in the case of

monotonically increasing errors, the proposed MIND

method yields an error which is smaller than, or equal

to, the error delivered by any sensor, and, thereupon,

also by the best sensor. More specifically, it holds that

ep · ek,i, k = 1,2, : : : ,N (3)

where ep = jyp¡ xij is the mean error that the MIND
method yields. Inequality (3) implies that given a set

of N homogeneous, monotonic in the mean sensors,

the selection of the minimum measurement yields

the smallest in the mean distance estimation error.

Thereupon, the proposed method offers a performance

which is, at least, “better” than the best sensor.

Furthermore, it is straightforward that the

minimum mean error sensor (best sensor) provides

an upper bound in the mean estimation error of the

MIND method. In addition, the MIND estimator

is unbiased and converges to the true distance with

probability one.

The MIND approach offers a new and simple

method for location estimation, since it may be used

with any type of sensors that yield monotonically

increasing errors, and also with range estimation

sensors that are expected to deliver this type of

error as discussed in the previous section. In the

following paragraph, this method is applied to the

Cricket sensors, and empirical results are obtained by

comparing the performance of MIND against that of

a (nonrealizable, ideal) genie-assisted optimal sensor

selection.

In order to provide a lower bound for the

performance of the proposed method, the concept of

a “genie” [17] is introduced. At every experiment the

genie reveals the sensor with the true minimum DTB

from the target. In that sense, it is a nonrealizable

CORRESPONDENCE 1501



Fig. 5. A Cricket beacon and a multi-sensor bundle of Cricket

listeners.

Fig. 6. Probability of selecting suboptimal DTB using proposed

fusion method.

fusion scheme, but constitutes a useful conceptual

framework for providing a lower bound in the mean

estimation error of the proposed MIND method. In

this context, the performance of the MIND method

may be evaluated by its mean differential error w.r.t.

the genie-based fusion method.

A fusion system with Cricket sensors is used in

order to evaluate MIND’s performance experimentally

with real data from real operational conditions. Since

the 3 dB-beamwidth of each Cricket node is 90± [16],
a bundle consisting of four listeners symmetrically

attached to each other is proposed, as illustrated

in Fig. 5, since this configuration will cover the

horizontal plane with four symmetrical ultrasonic

radiation patterns; thus, the needs for minimum

correlation among radiation patterns as well as

complete horizontal plane coverage are simultaneously

satisfied. It is noted that in Fig. 5 all listeners have the

same DTB.

Using the testbed illustrated in Fig. 5, the

probability that the MIND method does not deliver

the same measurement as the assumed underlying

genie is empirically calculated and displayed in

Fig. 6, for real distances xi equal to 0.2 m, 1 m,

2 m, 3 m, and 4 m, and for a misalignment angle

Áj spanning between (0
±, 90±) with a step of 10±.

Larger misalignment angles are not evaluated due

to cylindrical symmetry. According to Fig. 6, the

proposed fusion method delivers optimal estimates

in more than the 90% of cases for xi ¸ 1 m, while this
number increases as xi increases. Since the Cricket

beacons are usually attached to the ceiling, which is

the typical case for an indoor localization scenario,

the beacon-listener distance is usually larger than 1 m.

Therefore, the proposed method is expected to yield

optimal xi estimates more than 90% of the time in

typical indoor localization scenarios. Furthermore,

the difference in range estimation error between the

MIND and the genie jepj ¡ jeoptj, was found to be
always lower than 5 cm even for xi = 4 m, which

implies that the proposed method, albeit theoretically

suboptimal, offers an efficient means of achieving

range estimates.

IV. LOCALIZATION USING MIND AND
MEASUREMENTS RESULTS

1) Triangulation and Summary of Algorithm: The

proposed method may be combined with Cricket

sensors in order to develop a real-time localization

system. Besides the MIND considerations, Cricket

sensors need to be calibrated in order to obtain more

accurate single-sensor measurements. According to

Fig. 2, the plots of yi versus xi are almost identical,

meaning that in the case of a serial production of

bundles their calibration could be based on one

single plot of any sensor. The plotted line in Fig. 2

is approximated by

y = a ¢ x+ b: (4)

From Fig. 2 and the corresponding measurements,

it follows that tanμ = a= 0:893 and b = 0:052 m.

The Cricket bundle position coordinates (x,y,z)

may be estimated via triangulation. In the case where

there are four beacons with coordinates denoted by

(xi,yi,zi), i= 1,2,3,4, while ri, i= 1,2,3,4 denote the

respective DTB estimates, it follows that

(x¡ xi)2 + (y¡ yi)2 + (z¡ zi)2 = r2i : (5)

By applying some simple algebraic calculations, it

can be pointed out that

ai ¢ x+bi ¢ y+ ci ¢ z = di (6)

where i= 1,2,3, while ai = 2 ¢ (xi+1¡ xi), bi = 2 ¢
(yi+1¡ yi), ci = 2 ¢ (zi+1¡ zi), and di = (r2i+1¡ r2i )¡
(x2i+1¡ x2i )¡ (y2i+1¡ y2i )¡ (z2i+1¡ z2i ). Then, (6) may
be easily solved in order to calculate the (x,y,z)

coordinates.

Furthermore, since smaller DTB measurements

correspond to smaller range estimation errors, the

beacons corresponding to smaller DTB estimates

are preferable. Thereupon, in the case where the

multi-sensor bundle collects DTB values from more

beacons than the number required for triangulation,

the beacons corresponding to the smallest measured

DTB estimates are used.
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Fig. 7. Layout of measurements area.

The steps of the localization algorithms using

triangulation and MIND with Cricket sensors are

summarized as follows.

1) Measure the DTB to all available beacons from

all listening sensors.

2) For each beacon, select the smallest measured

DTB.

3) Select a number of different beacons in order

to perform triangulation, under the restriction that

beacons corresponding to smaller DTB measurement

values are preferred.

4) Calibrate the selected DTB measurements.

5) Perform triangulation using the calibrated DTB

measurements.

2) Testbed Setup: The proposed sensor fusion

and localization algorithm has been experimentally

evaluated within the premises of the Institute of

Informatics and Telecommunications (IIT) of the

National Center for Scientific Research (NCSR)

“Demokritos,” Athens, Greece [18]. A total of 6

Cricket beacons were attached on the ceiling of

a typical office room, at coordinates as shown

in Fig. 7 and facing towards the floor. The room

dimensions are equal to 6:5 m£ 5:1 m£ 2:7 m
(length/width/height).

A number of DTB measurements were collected

over a grid of points with dimensions 1 m£ 1 m, as
illustrated in Fig. 7. At each grid point, measurements

were collected for four different listener orientations

(North, South, East, and West as in Fig. 7) at a height

of 1 m above floor level, using four listeners being

kept vertical w.r.t. the floor surface. In addition,

since in a single-sensor Cricket system listeners are

typically located horizontally w.r.t. the floor surface

and facing towards the ceiling, further measurements

were also collected by placing a single listener

horizontally w.r.t. the floor surface and at a height of

1 m. At each grid point, the proposed multi-sensor

and single-sensor DTB measurements were collected

and then localization performance statistics were

calculated. Furthermore, localization performance

statistics were also calculated using the genie-based

optimal sensor selection method.

Finally, it is noted that position estimation was

performed using (6), with the listener’s height being

kept fixed and equal to z = 1 m, thus turning the

3D-localization problem to a 2D one thereupon only

three beacons are needed for localization instead of

four.

3) Measurement Results: Measurements results

indicate that, in the case where a single sensor is

used, there are numerous grid points for which

no position estimate can be calculated because no

ultrasonic pulses from at least three different beacons

are detected. On the other hand, in the case where

the proposed multi-sensor Cricket bundle and the

MIND technique are used, the number of points

for which no position estimate can be calculated is

drastically reduced, as tabulated in the second column

of Table I. Regarding the grid points for which

position estimation are feasible, Table I demonstrates

the respective mean accuracy and the 95th accuracy

percentile.

With the single-sensor approach, position

estimation is feasible for less than 45% of points,
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Fig. 8. Empirical cdfs of achieved accuracy.

TABLE I

Summary Measurements Results for the Layout of Fig. 7

Number of Points Where Mean 95th Accuracy

Localization was (not) Feasible Accuracy Percentile

Single Sensor, 1-Listener (with Calibration) 16 (14) 8.01 m 25.17 m

Proposed Method, 4-Listeners without Calibration 28 (2) 0.49 m 0.93 m

Proposed Method, 4-Listeners with Calibration 28 (2) 0.36 m 0.87 m

4-Listeners, Genie Optimal Sensor Selection (with Calibration) 28 (2) 0.29 m 0.72 m

while the mean accuracy and 95th percentile for these

points is 8.01 m and 25.17 m, respectively. These

uncommonly large values appear due to the large

number of outlier DTB measurements when using a

single listener. These outliers are efficiently detected

and rejected by the proposed method, without the

need of employing computationally intensive and

harder to implement techniques such as Kalman

filtering for outlier detection [19]. Indeed, in the

case where the proposed approach is used, position

estimation is feasible for over 93% of points while

the corresponding mean accuracy and 95th accuracy

percentile are 0.49 m and 0.93 m, respectively.

Furthermore, if calibration-based corrections are

applied on top of the proposed method, the mean

accuracy and 95th accuracy percentile become

0.36 m and 0.87 m, respectively. These data lead

to the conclusion that sensor calibration aids in

achieving better results, but the main improvement

is accomplished by the proposed fusion technique.

In comparison, the localization mean and 95th

percentile accuracy in the case where a genie selects

the optimal sensors for triangulation are equal

to 0.29 m and 0.72 m, respectively. This result

corroborates that the (suboptimal) MIND method

empirically achieves a performance that is directly

comparable to that of a genie-assisted sensor selection

and thus near-optimal.

The cumulative distribution functions (cdfs)

of the localization accuracy for the single- and

multi-sensor configurations are illustrated in Fig. 8

in a logarithmic horizontal scale. Clearly, the

proposed technique exhibits far superior performance

compared with a typical single-sensor system, while

it performs almost as well as the optimal genie-based

localization.

It should also be noted that there were some

points for which the achieved accuracy is better than

5 cm(!). Compared with the literature, the proposed

method provides more accurate results with a lower

number of beacon sensors. Indeed, the achieved best

accuracy in [11] is reported to be 10 cm and for a

much denser beacon grid, i.e., more beacons per

square meter used. The significance of using less

beacons may be pointed out by the fact that a lower

number of beacons is easier to deploy, less expensive

to maintain, and less energy consuming. On the other

hand, there is an increased hardware complexity due

to the multiple listeners used (namely four listeners),

but the increased accuracy is considered to justify this

approach.

In [20], early results about the Cricket platform

are presented. Location algorithm error rates on the

order of up to 45%—30%, down to 18% or 6% are

reported, depending on the localization algorithm and

the sample size. Furthermore, in [21], a Cricket-based
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localization system of 24 beacons has been deployed

in an indoor environment of dimensions 5 m£ 10:5 m;
the underlying localization technique involves

localization w.r.t. mobile nodes, as well as filtering

and rejection of outliers. In comparison, we used 6

beacons in a 5 m£ 6:5 m environment. The results

in [20] indicate an error of about 7% for the 95th

percentile, which is compared with an error of

0:872=6:5 ¢ 5:1 = 2:3% for the 95th percentile (i.e., the

ratio of an area of a square with an edge equal to the

95th percentile to the area of the room). These results

are comparable, but the proposed method achieves its

performance with fewer beacons and without filtering

or rejecting outliers. With respect to computational

cost, the proposed method is more efficient, since it

involves only the selection of the minimum distance

and simple triangulation, while the method in [21]

includes an extensive preparation step during which

the connectivity graph is calculated in order to achieve

mobile-assisted localization.

In addition, in [22], a compass is used on top

of a Cricket-based system, in order to compensate

for errors due to the misalignment angle, together

with a differential distance estimation algorithm. The

proposed system delivers a maximum error of 2.6%,

which is comparable to that of the proposed MIND

method, but it requires additional hardware. With

respect to computational cost, the method in [22] is

less efficient, since it requires more time in order to

calculate the differential distance.

Finally, in [23], a Cricket localization system

together with outlier rejection, Kalman filtering,

and a least-squares estimator are used in order to

track mobile devices. The relative testbed includes

a computer controlled Lego train, moving on a

predefined trajectory within a large room. A number

of 6 Cricket beacons were placed above the train

track, whose dimensions were equal to about 3 m£
1:3 m; hence, the density of beacons was significantly

larger than the one in our testbed. Depending on the

different algorithms used, the achieved accuracy error

varied between about 7 cm up to about 55 cm for the

95th percentile. These results are comparable to the

ones achieved by the proposed method, but the latter

does not use outlier rejection, Kalman filtering, or a

least-squares estimator. Finally, w.r.t. computational

cost, the proposed method is significantly more

efficient, since the method in [23] is using three

different steps (Kalman filtering, outlier rejection, and

least-squares estimation), which are computationally

expensive.

V. CONCLUSIONS

A simple, nonparametric fusion method that

requires no prior knowledge of any underlying

data statistics to implement it has been introduced

herein. The proposed MIND method is based in

collecting measurements from multiple sensors

and selecting the minimum among them as the

closest to the true distance estimate. The method is

applicable in cases where the underlying sensors are

monotonic in the mean, i.e., exhibit monotonically

increasing error functions, such as in the general

case of range-estimating sensors. The method is

shown to obtain accurate distance estimates from

low-quality sensors and yields estimates that are at

least as good as the ones obtained by the best in the

mean error sensor. Empirical evaluation of MIND has

shown that the proposed method exhibits near-optimal

performance. Furthermore, when applied to a bundle

of low-end, commercially-available location sensors,

the proposed method delivered far more robust,

reliable, and accurate position estimates than the

corresponding single-sensor solution. In conclusion,

it has been demonstrated through both theoretical

analysis and experimental results that multi-sensor

data fusion can improve both reliability and accuracy

of unreliable and fairly inaccurate sensors to yield

near-optimal performance, thus corroborating the

theoretical results in [4].
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