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Fig. 4. Power of the 135/225/R45/415/ 105 multi-rule Shewhart
procedure for detecting increases in random error

The probability for rejection (p) is plotted on the ordinate vs size of the random
error (ARE) on the abscissa. A value of 2.0 on the x-axis refers to a doubling
of the standard deviation of the anatytical method

of the Ry, rule on day 11 in Figure 3, this is usuaily related to
different causes, such as the instability of reagents or mea-
surement conditions, or variability in timing, pipetting, in-
dividual technique, or other similar factors. Definition of the
possible sources of errors depends on the particular analytical
method and the instrumentation used. The analyst will be
assisted by the manufacturer’s troubleshooting guidelines,
documentation of reagent or instrument changes, documen-
tation of previous problems, and experience.

When a control problem has been resolved, there remains
a question of what should be done with the control data from
that run—whether it should be included in further assessment
of control status and in further data calculations. In assessing
control after problem-solving procedures have been used, the
objective should be to assess control of the newly corrected
process. This is best done by increasing the number of control
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Fig. 5. Power of the 135/2,4/R4s/415/ 105 multi-rule Shewhart
procedure for detecting systematic error

The probability for rejection (p) is plotted on the ordinate vs the size of the sys-
tematic error (ASE) on the abscissa. A value of 2.0 on the x-axis refers to a
systematic shift equivalent to two times the standard deviation of the analytical
method
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observations in that next run, rather than utilizing any ob-
servations from a previous run. In performing calculations on
control data to update the control limits, the purpose is to
characterize only the stable performance of the analytical
process. Data obtained during unstable operation should not
be included.

Note:Reviewer R.B. emphasizes the importance of defining how
control results from out-of-control runs should be handled. The
authors’ perspective is that these results do not represent the sta-
ble performance of the analytical method; therefore, if included
in the summary data calculations, they would cause the standard
deviation to be too large and the resulting control limits too wide.
On the other hand, there is concern that elimination of these
points will narrow the control limits, so that they no longer cor-
rectly characterize the tails of the error distribution. This latter
problem should be minimized here because observations between
2s and 3s will be included in the final summary calculations.

Performance Characteristics

The performance characteristics of this multi-rule Shewhart
procedure are summarized by the “power functions” given in
Figures 4 and 5. These plots show the probability for rejecting
an analytical run as a function of the size of the error occurring
in the run (5). The probability for rejection (p) is plotted in
the y-direction vs the size of the analytical error (ARE, ASE)
in the x -direction. The point of intersection on the y-axis gives
the probability for false rejection (the probability for rejecting
the run when there is no analytical error except for the in-
herent imprecision of the analytical method). Points on the
curves give the probability for error detection (the probability
for rejecting the run when there is an error of the size indicated
on the x-axis). In Figure 4, the size of the random error (ARE)
is given as a factor such that a value of 2.0 means that the
standard deviation of the method has doubled. In Figure 5,
the size of the systematic error (ASE) is given in multiples of
the standard deviation, such that a value of 2.0s means a
systematic error equivalent to two times the standard devia-
tion of the analytical method.

Note: Reviewer A H. stressed the importance of understanding
the concept of inherent random error. There is always some ran-
dom error associated with a measurement process, even a stable
and well-controlled process. When we discuss error detection, we
actually refer to detecting error which is in addition to that inher-
ent random error. This concept of error is important, because it
helps explain why it is difficult for control procedures to detect
small analytical errors. In effect, we are dealing with a signal-to-
noise problem, with the inherent random error being the noise,
and the additional analytical error being the signal we would like
to detect.

Note: Reviewer R.T. commented that he had performed some
simulations on these procedures also and that they revealed these
procedures to be valid.

The different lines in Figures 4 and 5 represent the num-
ber of observations per analytical run (N). As N increases, the
capability for error detection increases. However, when N =
6, the probability for false rejection exceeds 5%. This is pri-
marily ascribable to the Ry, rule, and elimination of that rule
will decrease the false rejections to an acceptable proportion.
Based on the performance characteristics shown in Figures
4 and 5, the control procedure recommended here should be
satisfactory for N from 2 to 4. If N is greater than 4, then the
Ry, rule should be eliminated, or use of other control proce-
dures should be considered.

Power functions should provide the basis for comparing the
performance of different control procedures. However, such
information is often lacking in the references and descriptions
of other procedures, often because the data testing and in-
terpretation are not sufficiently well defined. Very careful and
detailed guidelines are necessary in order adequately to de-



