
Database Design with Real-World
Structures

Nikitas N. Karanikolas1 and Michael Gr. Vassilakopoulos2
1 Department of Informatics

Technological Educational Institute of Athens, Greece
nnk@teiath.gr

2 Department of Computer Science and Biomedical Informatics
University of Central Greece, Lamia, Greece

mvasilako@ucg.gr

The simplicity of the relational model types affects Information Systems design. In this
paper, we discuss another approach, where the Information System designers would be
able to depict the real world in a database model directly. This model provides more
powerful and composite data types, as those of the real world. However, more powerful
models need query and manipulation languages that can handle the features of the new
composite data types. The Conceptual Universal Database Language (CUDL) is such a
language that leads to more abstract database design levels. We demonstrate that a
database modelled by Entity-Relationship (ER) diagrams can be directly expressed to
the CUDL Abstraction Level (CAL), by a set of rules for direct transformation of ER
diagrams to CAL. This set consists of 5 rules, proposed in a previous work by us and, in
this paper, it is extended with an extra rule that deals with specific situations appearing
in practical applications. Consequently, the resulting more powerful and composite data
can be directly maintained with the CUDL language. In this way, the development
process consisting in conceptual design (ER), transformation to Logical Relational
Schema, usage of SQL for data manipulation/retrieval and the reverse steps to present
the results in the conceptual level is simplified by conceptual design (ER),
transformation to CAL and the usage of CUDL for direct manipulation/retrieval of real
world (conceptual) structures.

1. Introduction

A common methodology that is used up to today in the design of relational
databases is the specification of a set of attributes in (usually) one and universal
relation, the specification of a set of functional dependencies among these attributes
and the decomposition of the set of attributes into smaller relations which consist of
subsets of the original set of attributes, in order to eliminate update anomalies and
reduce data redundancy. During data manipulation, the combination of attributes
through the relational join operator is needed.
However, the real world that we are called to model with an Information System
(often with the use of a database) seldom incorporates repetitions of data (data
redundancy). Thus, we claim that the Information System design should not
decompose the real world in its fundamental characteristics, but the Information
System designers should be able to portray directly the real world in a model that
provides more powerful structures (through composite data types), as those of the
real world.

To support composite data types, meta-models (metadata schemata and the
corresponding metadata) are needed. Handling of such (composite data) types by
the programmer by SQL-like languages and extensions requires knowledge of the
internal organisation of both metadata and data, unless a data manipulation
language able to manipulate directly the composite data types is employed. The
Conceptual Universal Database Language (CUDL) is such a language. We
demonstrate that a database modelled by Entity-Relationship (ER) diagrams can be
directly expressed to the CUDL Abstraction Level (CAL) (in this paper, we extend
the set of rules for direct transformation of ER diagrams to CAL, presented in [8]).
Consequently, the resulting more powerful and composite data can be directly
maintained with the CUDL language. In this way, the development process
consisting in conceptual design (ER), transformation to Logical Relational Schema,
usage of SQL for data manipulation/retrieval and the reverse steps to present the
results in the conceptual level is simplified by conceptual design (ER),
transformation to CAL and the usage of CUDL for direct manipulation/retrieval of
real world (conceptual) structures.
The organization of the paper is as follows. Section 2 provides a review of data
models that were proposed to overcome weaknesses of the relational model.
However, having more powerful database models, but still using data manipulation
languages designed only for fundamental data attributes, is a waste of time and
resources. Therefore, in Section 3, we present the basic ideas related to CUDL and
its abstraction level, CAL [5, 6, 7, 14]. The transformation from CAL to FDB (meta-
model, [12, 13]) has been studied in [5, 7]. In Section 4, we present the 5 Rule Set
for Transformation from ER to CAL [8] (dealing with the most common cases that
appear in real life applications, for the transformation from ER diagrams to CAL),
while in Section 5, we propose the addition of an extra rule that is needed for the
transformation of a relation between a weak and a strong (not identifying) entity that
also has attributes. Section 6 concludes the paper and presents future research
possibilities.

2. Data Modeling Approaches

The Generic Data Modeling [1, 4] approach is an outcome mainly emanating from
research in the Medical Informatics domain. The fact that, in case of Health Care
data maintenance, the amount of information and the complexity of information lead
to a huge (Daedal / mazy) conceptual schema, concerned the Medical Informatics
scientists. The disadvantage of Generic Data Modeling is that querying the
resulting generic logical schema with standard SQL requires multiple statements
and considerable intellectual effort, especially when the queries are intended to
retrieve data for feeding data analysis tasks (e.g. feeding data mining applications).
The Entity Attribute Value (EAV) data modeling [9, 10] is also an outcome from
research in the Medical Informatics domain. The motivation for the research that
revealed the EAV data modeling was that, in the medical domain, the number of
parameters (facts) that potentially apply to any clinical study is vastly more than the
parameters that actually apply to an individual clinical study. Another reason, that
motivated the research that revealed the EAV data modeling, was that clinical
studies are subject to evolution as a result of medical research. As a consequence,
the number of clinical parameters related to a clinical study is always differentiated
(and, in most cases, are increased). Thus, the data model should be able to host
new clinical parameters for any clinical study, without the need for data (structure)

reorganization. Although, EAV data modeling support facts evolution (equivalent to
the addition columns in a relational table without the need for any reorganization), it
does not support table (entity) evolution.
The fact that the Relational model has difficulties of modeling the real world
motivated the development of the Nested Relational data model. Researchers
proposed a relational model where Non First Normal Form (NF2) relations are
allowed [11]. This extension encompasses the classical 1st Normal Form (1NF)
model and adds, to the relational algebra, two basic operators (namely “nest” and
“unnest”). Based on the “nest” operator, this proposal allows sets (as the result of
“one-attribute” nest operation) and sets of sets (as the result of “multi-attribute” nest
operation) as attribute values. NF2 sets are equivalent to simple FDB (explained in
the next paragraph) fields with repetitions and NF2 sets of sets are equivalent to
composite FDB fields with repetitions. The researchers have also proposed a query
language extension for NF2 table definition and manipulation. However, the NF2
presents a number weak points, presented in [8].
Yannakoudakis et al. [12, 13] investigated dynamically evolving database
environments and corresponding schemata, allowing storage and manipulation of a
variable number of fields per record, variable length of fields, composite fields (fields
having subfields), multiple values per field (either atomic or composite), etc. The
ultimate goal of their research was to make the design and maintenance of a
database a simpler task for database designers, so as that they will not have to put
in a lot of effort to design the database and later they will not have to pay special
attention and work for database changes. Their research proposed a new
framework for the definition of a universal logical database schema that eliminates
completely the need for reorganisation at both logical and internal levels, even when
major modifications of the database requirements have occurred. This new
framework was called Frame Database Model (FDB) [12].
This Universal logical database schema is based on well and strictly defined set of
Metadata and data tables and it does not permit any mixture with conventionally
stored data. All the entities that are available to the user, along with their attributes,
are documented exclusively in the metadata tables and the facts concerning the
instances of the entities are recorded exclusively in the data tables of the FDB
Universal schema. Another noteworthy feature of FDB is that it supports Schema
evolution, both for facts and entities. Moreover the FDB model allocates ways of
imprinting strictly connected (hardly related) information with innate (inherent/native)
mechanisms, in contrast to the relational model that compels the creation of artifact
structures (tables) to represent strictly connected data. The most important fact in
the FDB model is that it organizes information without any repetition of values. In
order to be more precise, not only it does not proceed in repetitions but it ensures
that these cannot be created. Thus the FDB model provides as an inherent feature
the no redundancy property.
The weakness of the relational model to manage complex, highly interrelated
information motivated the research for Object Databases (ODB) and Object
Relational Databases (ORDBs). Both models are described in several textbooks,
e.g. [2]. Our personal opinion is that the data management professionals do not like
to bother themselves with the required programming overhead needed for classes’
construction, inheritance, etc, and consequently they do not decide easily to use an
ODB. The other direction, ORBDs, aim to provide solutions for complex and highly
interrelated information management, without imposing complicated programming

constructions. The SQL3 standard provides an extension to the previous SQL
standards, for handling the most of the characteristics added with the ORDBs.

3. The Conceptual Universal Database Language

It is obvious from the plethora of models (presented in the previous section) that
there is a need for a DBMS able to provide more powerful data types, as those of
the real world complex data. In the first four discussed models, handling of such
types by the programmer by SQL-like languages and extensions requires
knowledge of the internal organization of both metadata and data [8]. Thus, the
ultimate goal should be to provide a data manipulation language able to manipulate
directly the composite data types (without bothering the programmer with internal
organization details), while permitting the direct expression of restrictions over
subfields.
In the approach that we have adopted, the FDB [12, 13] is the underlying model for
implementing our goal for a data manipulation language able to manipulate directly
composite data types. We preferred the FDB model [6], since it is more compact
and well defined than the other models and also supports schema evolution.
Karanikolas et al. [5, 7], introduced the syntax and semantics of the CUDL, a
database language (both DDL and DML for the FDB model) that supports
composite data types, i.e. attributes (tags in CUDL terminology) that combine more
than one other sub-attributes (subfields in CUDL terminology). It also supports the
existence of multiple values (repetitions) for both tags and subfields. The key
difference of CUDL to other approaches is that not only tags, but also subfields and
repetitions can be addressed in the CUDL statements. That means that the users
can express retrieval restrictions over a specific subfield or can express the
modification of a specific subfield in a specific repetition of some tag, etc. In [5], the
authors focused mainly in presenting and analyzing the statement of value retrieval
(in the schema and the data). More recently [7], they focused mainly in presenting
and analyzing the CUDL statement of value modifications in the schema (schema
changes) and the data. They also have undertaken the need for relationship
declarations [6]. This need becomes more significant for the FDB-CUDL model,
because the relationships between entities, in most cases, are implemented without
the introduction of new tables. Without having methods to declare relationships, the
user would face a refuting stage, where the model is self-explained (the user can
consult only tag_attributes and subfield_attributes and carry off the data model) but
the data relationships are totally undocumented. To cope with this need, the FDB
model introduced the Authority_links set. They also use the Authority_links set to
declare authority controls and reduce variability of expressions used for the same
instance of an identity. All of these (relationship declarations and authority control
declarations) are provided through CUDL statements.
Apart from being a data manipulation language able to manipulate directly
composite data types, while permitting the direct expression of restrictions over
subfields, CUDL allows the application programmer/designer to model the
structures of its application with composite data types that are closer to the ER
diagrams and sometimes without any decomposition of the ER entities into simpler
ones (an example is depicted in [8]).
On the other hand the logical database level of any CUDL based application is the
underlying FDB model. Thus, instead of transforming from ER to simple relational

tables to provide a logical model for manipulation through SQL, we are able to
transform from ER to CUDL Abstraction Level (CAL) entities (namely, CUDL data
sets with composite data types). In other words, the classic database design triplet
(ER, logical and physical design) is replaced by the quadruple: ER, CAL, logical and
physical design, with a fixed logical design (the FDB model).
CAL is the data model that the user conceives. It is a model that supports
collections of uniform (congenerous) instances (frame objects in CAL terminology).
The structure of each instance (of a concrete collection) is a set of attributes (tags in
CAL terminology). In contrast to the relational model, attributes (tags) can have
either simple (predefined) data types or can be composed by a set of sub-attributes
(subfields in CAL terminology). CAL model also supports the existence of multiple
values (repetitions) for both tags and subfields. Each CAL collection of uniform
(congenerous) instances is called entity (also called “abstract entity” for reasons
explained in [7]). The CUDL language is a database language for defining (DDL)
and handling (DML) CAL entities.
Given the above characteristics of CUDL and FDB, it is explained why somebody
would prefer to use a CUDL-DB versus an ORDB. The main advantages of CUDL-
DB are:

− schema evolution,

− not unused fields (zero repetitions make unneeded the use of null values),

− several real world constructions are neither so complex as to demand data
blades (and other extended capabilities of ORDBs), nor natively supported by
the relational model (e.g. more than one telephone numbers of a customer
require two tables with an 1:M relationship); these “intermediate” (neither simple,
nor complex) data constructions do not bother the programmer and are natively
supported in CUDL and CAL.

It is obvious, from the above explanation, that the transformation from ER entity
types to CAL entities is a direct mapping. However, the transformation from ER
relationship types to CAL structures is a more complicated process and we are
going to consider it in the next section.

4. The 5 Rule Set for Transformation from ER to CAL

4.1 A Transformation Example

In order to make more evident the need for designing in upper levels we will provide
an example of a really complicated ER (corresponding to a real situation) and its
transformation to CAL entities (CUDL data sets with composite data types). We are
going to present an Electronic Patient Record (EPR) that could be maintained in a
real Hospital Information System (HIS). A description of our HIS appears in [8].
The ER diagram of Figure 1 is detailed conceptual depiction of the HIS – EPR
database. According to the ER diagram of Figure 1, there is a binary relationship
between the Incident and the “Laboratorial Examination” entity types with cardinality
ratio M:N. A similar binary relationship between the Incident and the “Radiological
Examination” entity types, with cardinality ratio M:N, is also depicted. A third binary
relationship with cardinality ratio M:N exists for the Incident and the Doctors entity
types. This relationship is responsible for the servant physicians of the incident. The

unique ternary relationship of the ER diagram is an identifying relationship of the
weak entity type “Incident Operation”. There are two owner entity types that identify
the weak entity type “Incident Operation”. These are the Incident and the Operation
entity types. There is a binary relationship, with cardinality ratio M:N, between the
weak entity type “Incident Operation” and the (strong) entity type Doctors. The later
relationship expresses the set of doctors (surgeons, anaesthesiologists, etc) that
participate in each “Incident Operation”.
Next, we will provide the CAL entities that the ER diagram of Figure 1 is
transformed. The CAL entities are (for composite and multivalued attributes, () and
{} are used, respectively, Subsection 3.3.1 of [2]):
Incident
Incident_code, Date_started, Date_ended, Patient_code, SSI_code,
{Lab_examinations (LE_code, LE_datetime, LE_result)},
{Rad_examinations (RE_code, RE_datetime, RE_FilePath)},
{Incident_operations (Op_code, IO_datetime_started, IO_datetime_ended,
{IO_doctors})}, {Incident_doctors}, ICD9_code.
Doctor
Doctor_code, name, surname.
Operation
Op_code, name, cost.
Rad_Examination
RE_code, description, type, cost.
Lab_Examination
LE_code, name, normal_values, cost.
Patient
Patient_code, name, surname, father_name, tax_registration_number,
date_of_birth.
Social_Security_Institute
SSI_code, name, immediate_insured_rate, intermediate_insured_rate.
Diagnosis
ICD9_code, ICD9_description.

4.2 The Initial Transformation Rule Set

The rules for transforming from (relationships types of) ER diagrams to CAL entities
(at least for the cases that appear mostly in real applications, like those needed for
transforming from the ER of Figure 1 to the CAL entity Incident) that were presented
in [8] are the following:
Rule1. Binary relationships with cardinality ratio M:N can be hosted in one of the
two related entities as a tag (field) with repetitions. In case that the relationship has
no attributes, a simple (not composite) tag with repetitions is capable to store the
primary key values of the related (hosted) entity. Whenever the relationship has
attributes, a composite tag (composed of the primary key values of the hosted entity
and the relationship’s attributes) with repetitions should be used. Obviously, the key
of the hosting participant is not needed. This rule applies for the relationship
between the Incident and the “Laboratorial Examination” entity types and for the
relationship between the Incident and the Doctor entity types. Since we have

selected to host the relationships in the Incident entity type, the former relation is
implemented with the following composite tag with repetitions:
{Lab_examinations (LE_code, LE_datetime, LE_result)}.
For the same reason, the later relation is implemented with the following simple tag
with repetitions:
{Incident_doctors}.

Figure 1: The ER diagram of the HIS-EPR.

Rule 2. Binary identifying relationships can be transformed to a composite tag with
repetitions, hosted in the owner entity type. In this case, the composite tag should
be composed by the partial key (of the weak entity) and the rest attributes of the

relationship. Obviously, the key of the hosting owner entity is not needed. There is
no application of this rule in the studied ER diagram.
Rule 3. The previous rule can be extended for ternary identifying relationships.
Ternary identifying relationships can be transformed to a composite tag with
repetitions, hosted in one of the (two) owner entity types. In this case, the composite
tag should be composed by the partial key (of the weak entity type), the key of the
hosted owner entity type and the rest attributes of the relationship. Obviously, the
key of the hosting owner entity type is not needed. This rule applies for the weak
entity type “Incident Operation”. Since we have selected to host the relationships in
the Incident owner entity type, the relation is implemented with the
Incident_operations composite tag with repetitions:
{Incident_operations (Op_code, IO_datetime_started, IO_datetime_ended,
{IO_doctors})}
The partial key of the weak entity type participates in the Incident_operations as the
IO_datetime_started subfield. The key of the owner entity type Operation
participates in the Incident_operations as the Op_code subfield. The subfield
IO_datetime_ended is an attribute of the relationship. The role of the IO_doctors
subfield will be explained with the next rule.
Rule 4. Binary relationships with cardinality ratio M:N, relating a weak entity type
with some other (strong) entity type, without having relationship attributes, can be
transformed to an extra subfield with repetitions of the composite tag implementing
the weak entity. This rule applies for the relationship between the weak entity type
“Incident Operations” and the entity type Doctor. This rule explains the last
constituent of the Incident_operations tag, presented above. (The domain of
{IO_doctors} is the power set of the Doctor_code’s domain.)
Rule 5. Binary relationships with cardinality ratio 1:N can be hosted in the N-side
entity type, as a tag (field) without repetitions. In case that the relationship has no
attributes, a simple (not composite) tag is enough for storing the primary key values
of the opposite-side entity type. Otherwise, whenever the relationship has attributes,
a composite tag should be used. The primary key of the opposite-side entity type
and the relationship’s attributes composes this composite tag. Obviously, the key of
the hosting (N-side) participant is not needed. This rule applies for the relationships
of the Incident with the entity types Patient, Social_Security_Institute and Diagnosis,
respectively. The tags Patient_code, SSI_code and ICD9_code of the CAL entity
Incident implement these relationships.
Actually, the rules presented above are also responsible for updating the foreign-
key constraints.

5. The New Transformation Rule

In the following we will provide an extension of above set of rules. We are going to
provide a rule that applies in a specific subcase of relation between entity types,
because this subcase uncovers the barriers of the underlying Frame DataBase
(FDB) model [12]. The FDB model permits the use of composite data types, but not
in any (arbitrary) depth, as the Nested Relational model [3, 11] permits. This was a
key decision, since the FDB model should be accompanied with a data
manipulation language, CUDL [5, 7], able to directly manipulation of the provided
composite data structures.

5.1 The Modified Conceptual Model

In the following conceptual (ER) diagram (Figure 2), we introduce two attributes that
characterize the participation of a physician (doctor) to the weak entity “Incident
Operation”. These are:

part_begin representing the date and time that the participation of the doctor to the

incident operation started,
part_end representing the date and time that the participation of the doctor to the

incident operation finished.

These attributes define the duration of participation of a doctor in some specific
operation that is accomplished during some incident. In other words, the user
requirements demand not only to document the participation of doctors in incident
operations, but also to document when the doctor get involved and when he/she
back off the operation.

5.2 Handling attributes relating a weak with a strong entity type

The following rule handles the translation of a relation between a weak and a strong
(not identifying) entity that has attributes:

Rule 6. Binary relationships with cardinality ratio M:N, relating a weak entity type
with some other (strong) entity type, having relationship attributes (assume k
attributes), can be transformed to an extra subfield of the composite tag
implementing the weak entity. This extra subfield will not have repetitions and
should have unique values in the range of the whole set of frames of the strong
identifying entity. Moreover another composite tag with k+1 subfields and permitting
repetitions should be introduced in the related (strong) entity type. The relationship
(k) attributes, together with the unique value of the extra subfield of the composite
tag that implements the weak entity will combined to form the (k+1) subfield values
of some repetition of the new composite tag of the related (strong) entity. This rule
applies for the relationship between the weak entity type “Incident Operations” and
the entity type Doctor.

5.3 The modified Incident and Doctor entity types

In contrast to Rule 4, Rule 6 requires the creation of identifiers for each instance of
the weak entity of the relation and the storage of these identifiers into the frames
(instances) of the strong (not identifying) related entity. This could be an alternative
solution in case of a relation (between a weak entity type and a strong – not
identifying – entity type) without attributes. This is the only solution when the relation
(between the weak entity type and the strong – not identifying – entity type) has
attributes. The following are the CAL structures of the strong – identifying – entity
type “Incident” that hosts the weak entity type “Incident_operations” and the strong
– not identifying – entity type “Doctor”. The modifications (in relation to the previous
versions of the same entity types) are emphasized.

Figure 2: The modified conceptual model.

Incident
Incident_code, Date_started, Date_ended, Patient_code, SSI_code,
{Lab_examinations (LE_code, LE_datetime, LE_result)},
{Rad_examinations (RE_code, RE_datetime, RE_FilePath)},
{Incident_operations (Op_code, IO_datetime_started, IO_datetime_ended, IO_ID)},
{Incident_doctors}, ICD9_code.

Doctor
Doctor_code, name, surname,
{Operations_participated (IO_ID, part_begin, part_end)}.

Figure 3 portraits a CAL frame object (instance) for the entity “Incident”.

Incident_code S001

Date_started 13/5/2007

Date_ended 20/5/2007

Patient_code A001

SSI_code T001

Incident_doctors I001
 I002
 I079

ICD9_code 574

Incident_
operations

Op_
code

IO_
datetime_started

IO_
Datetime_ended IO_ID

 E002 14/5/2007 13:35 14/5/2007 15:05 317
 E015 16/5/2007 12:00 16/5/2007 13:00 318

Lab_
Examinations

LE_
code LE_datetime LE_result

 UREA 15/5/2007 10:00 32,4 mg/dl
 UREA 15/5/2007 14:30 32,5 mg/dl
 UREA 16/5/2007 08:00 31,6 mg/dl
 CREA 15/5/2007 10:00 1,17 mg/dl
 CREA 16/5/2007 08:00 1,08 mg/dl
 PROT 15/5/2007 10:00 7,19 g/dl
 PROT 16/5/2007 08:00 6,95 g/dl

Rad_
Examinations RE_code RE_datetime RE_FilePath

 U/S Kidney 16/5/2007 12:00 \\FS1\RIS\ Uaz34.tif

Figure 3: An Incident frame object.

Figure 4 portraits some CAL frame objects (instances) for the entity type “Doctor”:

5.4 Enforcement of data validation

The declaration of relationships between data structures is one of the most
significant tools for the enforcement of data validation procedures in any database
model. The relational model (through its language SQL) has introduced methods
(constraint statements or sub-statements) that permit the declaration of
relationships.
In CUDL the declaration of relationships between data structures is maintained in
an FDB table (table of the FDB universal logical database schema) named
Authority_Links [6]. The structure of this table is the following:
Authority_links (from_entity, from_tag, from_subfield, to_entity, to_tag, to_subfield,

relationship_type)
For example, the M:N relationship between the entity type “Incident” and the entity
type “Doctor” is declared in the following way:
(‘Incident’, ‘Incident_doctors’, null, ‘Doctor’, ‘Doctor_code’, null, 1)

Doctor_code I001

name Manos

surname Grigoropoulos

Operations
_participated IO_ID part_begin part_end

 317 14/5/2007 13:35 14/5/2007 15:05
(a)

Doctor_code I005

name Petet

surname Antoniou

Operations
_participated IO_ID part_begin part_end

 317 14/5/2007 13:35 14/5/2007 14:25
(b)

Doctor_code I012

name …

surname …

Operations
_participated IO_ID part_begin part_end

 318 16/5/2007 12:00 16/5/2007 13:00
(c)

Doctor_code I032

name …

surname …

Operations
_participated IO_ID part_begin part_end

 318 16/5/2007 12:00 16/5/2007 13:00
(d)

Doctor_code I065

name …

surname …

Operations
_participated IO_ID part_begin part_end

 317 14/5/2007 13:35 14/5/2007 15:05
(e)

Doctor_code I100

name …

surname …

Operations
_participated IO_ID part_begin part_end

 317 14/5/2007 14:25 14/5/2007 15:05
 318 16/5/2007 12:00 16/5/2007 13:00

(f)

Figure 4: Some Doctor frame objects.

The last attribute in the previous row of the Authority_links table is the integer value
of one (1). It defines a simple M:N relationship where the data implementing the
relationship are kept in the M side. The whole range of values of the
relationship_type attribute is provided in table 1.

type Explanation Symbol
1 Simple M:N, data implementing the relationship are kept in the M side M:N/L
2 Simple M:N, data implementing the relationship are kept in the N side M:N/R
3 S(M):N, data implementing the relationship are kept in the S(M) side S(M):N/L
4 S(M):N, data implementing the relationship are kept in the N side S(M):N/R
5 N:S(M), data implementing the relationship are kept in the N side N:S(M)/L
6 N:S(M), data implementing the relationship are kept in the S(M) side N:S(M)/R
7 S(M):S(N), data implementing the relationship are kept in the S(M) side S(M):S(N)/L
8 S(M):S(N), data implementing the relationship are kept in the S(N) side S(M):S(N)/R
11 Simple M:N, data implementing the relationship are kept in subfield in the M

side
M:N/L↓

12 Simple M:N, data implementing the relationship are kept in subfield in the N
side

M:N/R↓

14 S(M):N, data implementing the relationship are kept in subfield in the N side S(M):N/R↓
15 N:S(M), data implementing the relationship are kept in subfield in the N side N:S(M)/L↓
20 Authority control over Tag A/T
21 Authority control over Subfield A/S

Table 1: The range of values for the attribute relationship_type.

According to table 1 and based on the early solution where there are no attributes
for the relationship between “Incident operations” (the operations that a patient
undertook during the period of an incident) and “Doctors”, the relationship is
declared as:
(‘Incident’, ‘Incident_operstions’, ‘IO_doctors’, ‘Doctor’, ‘Doctor_code’, null, 3)
In case that the relationship between “Incident operations” and “Doctors” has
attributes and according to the modified CAL entity types, the relationship is
declared as:
(‘Incident’, ‘Incident_operstions’, ‘IO_ID’, ‘Doctor’, ‘Operations_participated’, ‘IO_ID’,
14)

6. Conclusions

So far, the design of an application having a relational data repository mainly
required the decomposition of the real world structures into very simple attributes,
the composition of a logical schema with naive relational structures and the
formation of query and manipulation (SQL) statements based on the logical
schema. There is a need for a database query and manipulation language, like
CUDL, able to handle directly composite entities of more abstract data models that
offer composite / complex data types expressing real world entities (without
transforming them to a relational logical schema). The types used in CUDL allow a
database designer / developer to express the structures of his application with types
that are very close to the ER entity types, while ER entity types can be directly
transformed to CAL entity types. Thus, the designers and developers can be
concentrated with the business logic of their applications, instead of wasting time for
the expression of statements that manipulate naive database structures.
The set of rules for transforming (the relationship types of) an ER diagram to CAL,
so that the CUDL can be utilized to manipulate the resulting high level entities, that
was presented in [8], was extended in this paper with an extra rule about the
translation of a relation between a weak and a strong (not identifying) entity that
also has attributes. This rule applies in a specific subcase of relation between entity

types that uncovers the barriers of the underlying Frame DataBase (FDB) model
[12] (the FDB model permits the use of composite data types, but not in any depth).
Possible future research directions include

− completing the analysis and design process that consists in the quadruple “ER,
CAL, FDB, physical level” by providing a physical model and a transformation of
the FDB to this model,

− implementing a database machine storing data based on this physical model
and being able to process CUDL queries,

− designing algorithms for optimized processing of CUDL queries,

− evaluating this machine in terms of performance and suitability for development
of complex applications.

References
[1] Cai. J., Johnson, S., Hripcsak, G.: Generic Data Modeling for Home Telemonitoring of Chronically Ill

Patients. In: American Medical Informatics Association - Annual Symposium 2000 (AMIA 2000), pp.
116--120. Los Angeles, CA (2000)

[2] Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 3rd Edition. Addison Wesley
Publishing Company, Reading, Mass. (2000)

[3] Fischer P.C., Van Gucht D.: Determining when a Structure is a Nested Relation. In: 11th Int. Conf. on
Very Large DataBases (VLDB 1985), pp. 171--180. Morgan Kaufmann, Stockholm, Sweden (1985)

[4] Johnson, S.B.: Generic data modeling for clinical repositories. Journal of American Medical
Informatics Association 3 (5), 328--339 (1996)

[5] Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J., Skourlas, C.: CUDL language semantics, liven
up the FDB data model. Ιn: 11th East-European Conf. on Advances in Databases and Information
Systems (ADBIS 2007), local proceedings, pp. 1--16. Technical Univ. of Varna, Varna, Bulgaria
(2007)

[6] Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J.: CUDL Language Semantics: Authority Links. Ιn:
12th East-European Conf. on Advances in Databases and Information Systems (ADBIS 2008), pp.
123--139. Tampere Univ. of Technology, Pori, Finland (2008)

[7] Karanikolas, N. N., Nitsiou, M., Yannakoudakis, E. J., Skourlas, C: CUDL Language Semantics:
Updating Data. Journal of Systems and Software 82 (6), 947-962 (2009)
doi:10.1016/j.jss.2008.12.031

[8] Karanikolas N. and Vassilakopoulos M., Conceptual Universal Database Language: Moving Up the
Database Design levels, Proc. of ADBIS'09, LNCS 5739, Riga (2009), 330-346.

[9] Nadkarni P.M.: Clinical Patient Record Systems Architecture: An Overview. Journal of Postgraduate
Medicine 46 (3), 199--204 (2000)

[10] Nadkarni P.: An introduction to entity-attribute-value design for generic clinical study data
management systems. Presentation in: National GCRC Meeting. Baltimore, MD (2002)

[11] Schek H.J., Pistor P.: Data Structures for an Integrated Data Base Management and Information
Retrieval System. In: 8th Int. Conf. on Very Large DataBases (VLDB 1982), pp. 197--207. Morgan
Kaufmann, Mexico City, Mexico (1982)

[12] Yannakoudakis E.J., Tsionos C.X., Kapetis C.A.: A new framework for dynamically evolving database
environments. Journal of Documentation 55 (2), 144--158 (1999)

[13] Yannakoudakis E.J., Diamantis I.K.: Further improvements of the Framework for Dynamic Evolving of
Database environments. In: 5th Hellenic – European Conf. on Computer Mathematics and its
Applications (HERCMA 2001). Athens, Greece (2001)

[14] Yannakoudakis E.J., Nitsiou M., Skourlas, C., Karanikolas, N.N.: Tarski algebraic operations on the
frame database model (FDB). In: 11th Panhellenic Conf. in Informatics (PCI 2007), pp. 207--216.
New Technologies Publications, Patras, Greece (2007).

