
Conceptual Universal Database Language:
Literature Review and the Future of Database Design

Nikitas N. Karanikolas
Department of Informatics,

Technological Educational Institute (TEI) of Athens
Ag. Spyridonos street, 12210 Aigaleo, GREECE

+30-210-5385882

nnk@teiath.gr

ABSTRACT
Today, the restricted data type domains of the relational model
affect Information Systems design. We claim another approach
where the Information System designers would be able to portray
directly the real world in a database model that provides more
powerful and composite data types, as those of the real world.
However, more powerful databases models need the introduction
of data query and manipulation languages that reflect the features
of the new composite data types. We introduce such a language
and also reveal a direct consequence, which is the introduction of
higher database design levels.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages – Data description
languages (DDL), Data manipulation languages (DML).

H.2.4 [Database Management]: Systems – Query processing,
Relational databases.

D.3.2 [Programming Languages]: Language Classifications –
Design languages, Nonprocedural languages.

General Terms
Design, Management, Languages.

Keywords
Conceptual database design, Entity Relationship Diagrams.

1. INTRODUCTION AND MOTIVATION
The methodology that is used up to today in the design of
relational databases is the localization of a set of attributes in
(usually) one and universal relation and the localization of a set of
functional dependencies and afterwards the decomposition of the
set of attributes into smaller relations which consist of subsets of
the original set of attributes, in order to eliminate update
anomalies and reduce data redundancy.

A speculation of the methodologies of data analysis is that we do
not know the structure of information that we were called to
impress in an Information System. For this reason we begin with
interviews of the persons involved in the operation of a non-
computerized system and from this process we arrive in a series
of fundamental informations (attributes). The right correlation and
grouping of the fundamental attributes is a next stage of data
analysis. This speculation and technique of data analysis has also
influenced the design of relational databases.

The normalization is the process that aims to produce the best
from a (from the beginning) weak data model. (“the relational
model is limited with respect to semantic content (i.e., expressive
power) and there are many design problems which are not
naturally expressible in terms of relations” [1], “The relational
model is weak when showing many-to-one relationships” [2]).

The real world that we are called to impress with an Information
System (often with the use of a database) seldom incorporates
repetitions of data (data redundancy). As an example in a non-
computerized managed library we do not incorporate a lot of
series of books (copies) and a corresponding number of
bookshelves in order to place the first set of book copies sorted
according to the title, the second set of book copies sorted
according to the first writer, the third set of book copies sorted
according to the theme category, etc. On the contrary we do not
use any ordering (more precisely we use the ordering of books
according to the date of import into the library) or use some of the
orderings that interest us (usually thematic) and in addition we
create indexes (with cards) for every one of the ordering that
interest us. Each card contains the key of the classification and a
reference to the natural ordering (the location of book in the
bookshelves).

Thus, we claim that the Information System design should not
decompose the real world (that we were called to impress in an
Information System) in its fundamental characteristics and
afterwards to proceed with simple compositions of characteristics
that relational model allows. We claim another approach where
the Information System designers would be able to portray
directly the real world in a model that provides more powerful
structures, as those of the real world. Section 2 provides a review
of such models. Some of them could be used instead of the
relational model. However, having more powerful database
models but still using data manipulation languages designed only
for fundamental data attributes, is a waste of time and resources.
Therefore, there is a necessity for a database query and
manipulation language able to manipulate directly the composite

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EATIS’09, June 3–5, 2009, Prague, CZ.
Copyright 2009 ACM 978-1-60558-398-3/09/06.$10.00.

(real world) data types. This necessitation is explained, more
detailed, in section 3. Section 4 gives details of the Conceptual
Universal Database Language (CUDL), which satisfy the
mentioned necessitation. Section 5 reveals the consequence of
higher database design levels.

2. BACKGROUND
2.1 Generic Data Modeling
The generic data modeling [3] approach is an outcome mainly
emanate from research in the Medical Informatics domain. The
fact that, in case of Health Care data maintenance, the amount of
information and the complexity of information lead to a huge
(Daedal / mazy) conceptual schema, concerned the Medical
Informatics scientists. Moreover, the fact that the direct
production of a logical schema for a relational DBMS, from a
given huge conceptual schema, obviously conserve this Daedal
characteristic, gave raise for research for alternative data
modeling approaches. Another inherent characteristic of relational
logical schemata is the difficulty for supporting data evolution
(changing information needs). The research results for both
problems (Daedal conceptual and logical schema and difficulty
for data evolution in relational data) reveal the generic data
modeling approach. This approach defines two generic
transformations (namely “flattening” and “relation merging”).
The later transformation (“relation merging”) is also the basis for
supporting data evolution. These transformations, when applied to
the original conceptual schema, produce a generic logical schema
consisted of a reduced number of tables. However, this process is
not a very strict procedure and actually it is depended from (the
personal perception and) the selections made by the person who
guides the process and applies the mentioned generic
transformations. The final number of tables, as the outgrowth of
the transformation process, is dependent from the selections made
and is not a concrete (predefined) set of tables (as happens in
other cases, e.g. in the FDB data modeling).
The disadvantage of generic data modeling is that querying the
resulting generic logical schema with standard SQL requires
multiple statements and considerable intellectual effort, especially
when the queries are intended to retrieve data for feeding data
analysis tasks (e.g. feeding data mining applications). To
overcome such difficulties, researchers have defined the Extended
Multi-Feature (EMF) SQL extension [4] that provides simpler to
understand, more compact and more efficient query constructions.

2.2 EAV Data Modeling
The Entity Attribute Value (EAV) data modeling [5,6] is also an
outcome from research in the Medical Informatics domain. The
motivation for the research that revealed the EAV data modeling
was that, in the medical domain, the number of parameters (facts)
that potentially apply to any clinical study is vastly more than the
parameters that actually apply to an individual clinical study. For
example, the potential number of laboratory examinations that a
patient could be submitted to is a huge superset of the actually
submitted examinations in a specific medical case (e.g. a patient
suffering from a bilestone). Another reason, that motivated the
research that revealed the EAV data modeling, was that clinical
studies are subject to evolution as a result of medical research. As
a consequence the number of clinical parameters related to a
clinical study are always differentiated (and, in most cases, are
increased). Thus, the data model should be able to host new

clinical parameters for any clinical study, without the need for
data (structure) reorganization. The research, motivated by the
above-mentioned reasons, revealed the EAV data modeling.
According to EAV design, metadata and data tables compose the
logical database schema. The facts (that actually apply to a
clinical study) are recorded into the data tables, as a triplet: the
Entity, the Attribute and the Value. The Attribute is the recorded
fact (clinical parameter) and the Entity is a composition of the
relevant patient’s identifier and some timestamp. The metadata
tables are used to define the data composition (which clinical
parameter (Attribute) pertain to which clinical study).
There are three main versions of the EAV data modeling [7] but
all of them share the same basic principle (the triplet: Entity /
Object, Attribute, Value). Another interesting feature of the EAV
models is that they permit mixture of EAV stored and
conventionally stored data. However, the existence of this
heterogeneity complicates significantly the task of data querying.
We should also mention that the EAV data modeling support facts
evolution (equivalent to the addition columns in a relational table
without the need for any reorganization) but does not support
table (entity) evolution.

2.3 FDB Data Modeling
In previous works [8,9] there has been an investigation of
dynamically evolving database environments and corresponding
schemata, allowing storage and manipulation of variable number
of fields per record, variable length of fields, composite fields
(fields having subfields), multiple values per field (either atomic
or composite), etc. The ultimate goal of the research work of
Yannakoudakis was to make the design and maintenance of a
database a simpler task for database designers, so as that they will
not have to put in a lot of effort to design the database and later
they will not have to pay special attention and work for database
changes. Their research proposed a new framework for the
definition of a universal logical database schema that eliminates
completely the need for reorganization at both logical and internal
levels, even when major modifications of the database
requirements have occurred. This framework was called FDB [8].
This Universal logical database schema is based on well and
strictly defined set of Metadata and data tables and it does not
permit any mixture with conventionally stored data. All the
available to the user entities and their attributes are documented
exclusively in the metadata tables and the facts concerning the
instances of the entities are recorded exclusively in the data tables
of the FDB Universal schema. Another noteworthy feature of
FDB is that it support Schema evolution, both for facts and
entities.
Moreover the FDB model allocates ways of imprinting strictly
connected (Hardly related) information with innate
(inherent/native) mechanisms. In contrast to the relational model
that compels the creation of artifact structures (tables) to represent
strictly connected (Hardly related) data. As an example, the
relational model requires the creation of new table to store data
that relate of the form one to many (the addresses or the
telephones of customer). In contradiction to the relational model,
the FDB model can maintain the same information with a field
that is accommodated in the side of the one and accepts multiple
values. Even more complex forms of strictly connected (Hardly
related) information, are impressed, in the FDB model, with
innate (inherent/native) mechanisms. For example a correlation of

information with a form many to many (as are the DVDs that
have been rented to a member of a Video Club) is maintained in
one of the two connected sides without requiring the creation of
new table to correlate the information. That is to say in the
correlations many to many we follow a mechanism that emanates
from the real world (in the example of the Video Club we
maintain inside the card of a customer a table with his/her renting
of DVDs).
The most important fact in the FDB model is that it organizes
information without any repetition of values. In order to be more
precise not only it does not proceed in repetitions but it ensures
that these cannot be created. In the example of the addresses (or
alternative the telephones) of a customer the basic data of a
customer (let us say name, surname and code) are stored once and
in the field addresses are stored the all different addresses that the
customer may have. That is to say the use of a single big
(universal) table to store/repeat as many times the basic attributes
of a customer (name, surname and code) as the number of his/hers
addresses is avoided naturally (without any effort). Thus the FDB
model provides as an inherent feature the no redundancy property.

2.4 Not First Normal Form (NF2) or Nested
Relational Data Modeling
The motivation for inventing the Nested Relational data model
was that: The Relational model has difficulties of modeling the
real world; It is also inconvenient for handling even simple data
structures commonly used in IR. To overcome these problems,
Researchers has proposed a relational model where Non First
Normal Form (NF2) relations are allowed [10,11]. This extension
encompass the classical 1st Normal Form (1NF) model and adds,
to the relational algebra, two basic operators (namely “nest” and
“unnest”). Based on the “nest” operator, the proposal allows sets
(as the result of “one-attribute” nest operation) and sets of sets (as
the result of “multi-attribute” nest operation) as attribute values.
NF2 sets are equivalent to simple FDB fields with repetitions and
NF2 sets of sets are equivalent to composite FDB fields with
repetitions. The researchers have also proposed a query language
extension for NF2 table definition and manipulation. However, the
NF2 present some weak points:

– Does not support Entity or Fact (Attribute) evolution
– Does not have Universal logical schema
– The proposed query language extension only undertakes (be

engaged in) Retrieval statements
– This Retrieval statements are rather suggestions or

hypothetical statements and are not parts of a mature language
that handles relational tables with non-atomic (sets and sets of
sets as) attribute values

– The notion that governs the whole idea, which has passed
through and is reflected by the proposed query language
extension, is that the subfields (of composite fields) are not
directly accessed by the user.

– Related to the previous point is that the proposed query
language uses Nested Select statements whenever a restriction
over a subfield should be applied

Possibly, these weak point has the consequence that, after 26
years, Non First Normal Form does not seem to be implemented
as a DBMS.

2.5 Object Oriented and Object Relational
Databases
The weakness of the relational model to manage complex, highly
interrelated information motivated the research for Object
Databases (ODB) and Object Relational Databases (ORDB). Both
models are also described in textbooks [12].
The portability and interoperability of ODBs is ensured by the
Object Model suggested by the Object Database Management
Group (ODMG). The ODMG Object Model provide also the
definition for an Object Definition Language (ODL) and an
Object Query Language (OQL). The ODL statements seem to (or
are influenced by) the Java language statements used for class
definitions, while the OQL statements seems to (or are influenced
by) the SQL statements used for data retrieval. At mid of the
1990’s decade there were a notable number of ODB solutions but
today only half of those remain active. Our personal opinion is
that the data management professionals are not like to bother
themselves with strange programming constructions of classes,
inheritance and so on, and consequently they do not decide easily
to use an ODB.
The other direction, the Object Relational Databases, aim to
provide solutions for complex and highly interrelated information
management, without imposing complicated programming
constructions. For this reason, it provide Black Box Complex data
types for various purposes (management of time series,
geographic point manipulations, face recognition, content-based
retrieval of digital audio, image watermarking, image search, full-
text search), Opaque types for extending the repertoire of Black
Box Complex data types, User Defined Complex data types.
Black Box Complex data types are named as Data Blades in
Informix Universal Server and are named as Cartridges in Oracle.
The User Defined Complex data types have similar characteristics
to the ODMG Objects. The composition of User Defined
Complex data types is based on simpler structures (namely: the
Collection types and the Row types). The SQL3 standard provides
an extension to the previous SQL standards, for handling the most
of the characteristics added with the ORDBs.

3. THE MISSING PUZZLE ITEM
It is obvious from the plethora of models (presented in the
background section) that there is a need for DBMS able to
provide more powerful data types, as those of the real world
complex data. The first four discussed models (namely: Generic,
EAV, FDB and NF2) provide composite data types using meta-
models, on top of relational databases. The problem with these
approaches is that the handling of the composite data requires
very good acquaintance of the underlying meta-model structures
and the internal organisation of both metadata and data. The user
(programmer) should combine the business logic requirements
with the retrieval of the metadata that explain the composition of
the requested composite data types, the retrieval of the underlying
simple data and the reverse composition of the requested
composite data (three steps). In some case of the first four
discussed models, there is provided an SQL query language
extension that uses Nested Select statements whenever a
restriction over a subfield should be applied. However this
approach, except that it is not mature, complicates the deliverance
(expression) of data maintenance statements for real applications.
Thus, the ultimate requirement should be to provide a data

manipulation language able to manipulate directly the composite
data types (without bothering the programmer with the mentioned
three steps), while permitting the direct expression of restrictions
over subfields.
In regard to the ideas presented in the Object Relational model,
the new data manipulation language should provide Black Box
Complex data types and Opaque types for extending the repertoire
of Black Box Complex data types. However the Object data types
of the Object Relational model can be excluded from the new data
manipulation language, since the provided composite data types
covers satisfactory the needs for complex data types.

4. THE CONCEPTUAL UNIVERSAL
DATABASE LANGUAGE (CUDL)
In our approach we have adopted the Frame Database Model as
the underlying model for implementing our goal for a data
manipulation language able to manipulate directly composite data
types. We preferred the FDB model, since it is more compact and
well defined than the other models and also supports schema
evolution [15]. The logical schema of FDB is based on the
following tables:

Name Structure Use
Languages (language_id, lang_name) AM
Datatypes (datatype_id, datatype_name) AM
Messages (message_id, language, message) AM
Entities (frame_entity_id, title) PM
Tag
_attributes

(entity, tag, title, occurrence, repetition,
authority, language, datatype, length)

PM

Subfield
_attributes

(entity, tag, subfield, title, occurrence,
repetition, language, datatype, length)

PM

Catalogue (entity, frame_object_number,
frame_object_label, temp_stamp)

D

Tag_data (entity, frame_object, tag, repetition, chunk,
tdata)

D

Authority
_links

(from_entity, from_tag, from_subfield,
to_entity, to_tag, to_subfield, relationship_type)

R

Subfield
_data

(entity, frame_object, tag, tag_repetition,
subfield, subfld_repetition, chunk, sdata)

D

Notes:
AM: Auxiliary Metadata; PM: Primary Metadata;
D: Data; R: Relationships; Primary keys are underlined.

Let us explain this universal schema. Only three tables (sets in the
FDB terminology) of the schema are used to host data, namely:
Catalogue, Tag_data and Subfield_data. The rest sets host
metadata information. Three of the metadata sets, namely the
Entities, Tag_attributes and Subfield_attributes, are used to define
every abstract entity and its constituents. One of the metadata
sets, the Authority_links, is used to define data relationships. The
rest three are auxiliary metadata sets. We must state that this
universal schema is able to carry into effect 1:M and M:N
relationships without the need for intermediate entities. 1:M
relationships are carried into effect very easy with tags that accept
repetitions. M:N relationships are also carried into effect with
repetitions. Tags that accept repetitions means the possibility of
adding a list of values in the place of a single field. Also, a tag
can entertain subfields. From the combination of the two above,
results the ability of placing an entire table in the place of a single
field. In addition to this, there is the ability that each of the cells
that comprise the table can accept repetitions (list of values).

Karanikolas et al. [13], introduced the syntax and semantics of the
CUDL language. There they focused mainly in presenting and
analysing the statement of value retrieval (in the schema and the
data). Karanikolas et al. [15], focused mainly in presenting and
analysing the CUDL statement of value modifications in the
schema (schema changes) and the data. Karanikolas et al. [14],
focused mainly with the need for relationship declarations. This
need becomes more significant for the FDB-CUDL model
because the relationships between entities, in most cases, are
implemented without the introduction of new tables. Without
having methods to declare relationships, the user would face a
refuting stage where the model is self-explained (the user can
consult only tag_attributes and subfield_attributes and carry off
the data model) but the data relationships are totally
undocumented. To cope with this need, the FDB model
introduced the Authority_links set. They also use the
Authority_links set to declare authority controls and reduce
variability of expressions used for the same instance of an
identity. All of these (relationship declarations and authority
control declaratios) are provided through CUDL statements.

In order to give an indicative example of the CUDL language, we
suppose that some application undertakes the administration of
the projects implemented by a company. In such an application
there is an entity, named Projects, that contains all projects that
the company services. The following are instances of the Projects
entity.

Project_code Proj066

Title Hermes

Budget 455,000

Actions Employee Action Deadline
 Yannis Software analysis 17/10/2007
 Vangelis Software requirements 22/01/2008
 Dimitris

Panos Program code 23/04/2008

Project_code Proj055

Title Athena

Budget 250,000

Actions Employee Action Deadline
 Yannis grubbing 20/3/2009
 Giorgos

Maria pruning 25/3/2009

 Nikos watering 30/4/2009

The following is a data retrieval statement, expressed in CUDL:

Find data when entity = ‘Projects’ and
tag = ‘title’ restr data = ‘Hermes’ and
subfield = ‘Action’ restr data = ‘program code’ and
subfield = ‘Employee’

With this CUDL statement we declare that the tag ‘title’ will be
projected and concurrently will function as a restriction for the
selection of instances, the subfield ‘Action’ will be projected and
concurrently will function as a restriction for the selection of
instances and finally the subfield ‘Employee’ will only be
projected.

5. HIGHER DATABASE DESIGN LEVELS
As we have mentioned earlier, the ultimate goal was to define a
data manipulation language able to manipulate directly composite
data types, while permitting the direct expression of restrictions
over subfields. CUDL is the outcome of such an effort. However,
there is another interesting outgrowth of the introduction of
CUDL. With CUDL, the application programmer / designer can
model the structures of its application with composite data types,
closer to the ER diagrams and sometimes without any
decomposition of the ER entities into simpler ones. For example
the following ER diagram:

is directly supported by the CUDL composite data types (see the
previous instances of Projects). On the other hand the logical
database level of any CUDL based application is the underlying
FDB model. Thus, instead of transforming from ER to simple
relational tables to provide a logical model for manipulation
through SQL, we are able to transform from ER to CUDL
Abstraction Level (CAL) entities (namely, CUDL data sets with
composite data types). In other words, the classic database design
triplet (ER, logical and physical level) is replaced by the
quadruple: ER, CAL, logical and physical design, with a fixed
logical design (the FDB model).

6. CONCLUSIONS
So far, the design of an application having a relational data
repository required the decomposition of the real world structures
into very simple attributes, the composition of a logical schema
with naive relational structures and the implementation of query
and manipulation (SQL) statements based on the logical schema.
We have claimed that some of the existing higher data models
(offering composite / complex data types), in conjunction with the
Conceptual Universal Database Language (CUDL), can help us to
ignore the logical schema and map directly from the ER diagrams
into more sophisticated (higher) database entities. We have also
provided arguments and evidence about our claims. Thus, with
CUDL, it is permitted the direct manipulation of higher database
entities and the designers and developers can be concentrated with
the business logic of their applications, instead of wasting time for
the expression of statements that manipulate naive database
structures.

7. REFERENCES
[1] Worboys, M., Hearnshaw, H., and Maguire, D. 1990. Object-

Oriented Data Modelling for Spatial Databases. International
Journal of Geographical Information Systems 4, 4, 369–383.

[2] Pavković, N., Štorga, M., and Pavlić, D. 2001. Two
Examples of Database Structures in Management of

Engineering Data. In Proceedings of the 12th International
Conference on Design Tools and Methods in Industrial
Engineering (Bologna, 2000). ADM-Associazione Nazionale
Disegno di Macchine, 89-90.

[3] Johnson, S.B. 1996. Generic data modeling for clinical
repositories. Journal of American Medical Informatics
Association 3, 5, 328-339.

[4] Johnson S. B., and Chatziantoniou D. 1999. Extended SQL
for manipulating clinical warehouse data. In proceedings of
American Medical Informatics Association Symposium.
AMIA 1999, 819-823.

[5] Nadkarni P.M. 2000. Clinical Patient Record Systems
Architecture: An Overview. Journal of Postgraduate
Medicine 46, 3, 199-204.

[6] Nadkarni P. 2002. An introduction to entity-attribute-value
design for generic clinical study data management systems.
Presentation in National GCRC Meeting (Baltimore, MD,
April 13, 2002).

[7] Anhøj, J. 2003. Generic Design of Web-Based Clinical
Databases. Journal Medical Internet Research 4.
http://www.jmir.org/2003/4/e27/

[8] Yannakoudakis E.J., Tsionos C.X., and Kapetis C.A. 1999.
A new framework for dynamically evolving database
environments. Journal of Documentation 55, 2, 144-158.

[9] Yannakoudakis E.J., and Diamantis I.K. 2001. Further
improvements of the Framework for Dynamic Evolving of
Database environments. In Proceeding of the 5th Hellenic –
European Conference on Computer Mathematics and its
Applications (Athens, Greece, 2001).

[10] Schek H.J., Pistor P. 1982. Data Structures for an Integrated
Data Base Management and Information Retrieval System.
In proceedings of the 8th International Conference on Very
Large DataBases. VLDB 1982, 197-207.

[11] Fischer P. C., and Van Gucht D. 1985. Determining when a
Structure is a Nested Relation. In proceedings of the 11th
International Conference on Very Large DataBases. VLDB
1985, 171-180.

[12] Elmasri R., and Navathe, S. 2000. Fundamentals of Database
Systems, 3rd Edition, Addison Wesley Publishing Company.

[13] Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J., and
Skourlas, C. 2007. CUDL language semantics, liven up the
FDB data model. Ιn Proceedings of Eleventh East-European
Conference on Advances in Databases and Information
Systems (Varna, Bulgaria, September 29 - October 03,
2007). ADBIS 2007 local proceedings, 1-16.

[14] Karanikolas, N.N., Nitsiou, M. and Yannakoudakis, E.J.
2008. CUDL Language Semantics: Authority Links. Ιn
Proceedings of the Twelfth East-European Conference on
Advances in Databases and Information Systems (Pori,
Finland, September 5-9, 2008). ADBIS 2008, 123-139.

[15] Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J., and
Skourlas, C. 2009. CUDL Language Semantics: Updating
Data. Journal of Systems and Software 82, 6, 947-962.

http://www.jmir.org/2003/4/e27/

	1. INTRODUCTION AND MOTIVATION
	2. BACKGROUND
	2.1 Generic Data Modeling
	2.2 EAV Data Modeling
	2.3 FDB Data Modeling
	2.4 Not First Normal Form (NF2) or Nested Relational Data Modeling
	2.5 Object Oriented and Object Relational Databases
	3. THE MISSING PUZZLE ITEM
	4. THE CONCEPTUAL UNIVERSAL DATABASE LANGUAGE (CUDL)
	5. HIGHER DATABASE DESIGN LEVELS
	6. CONCLUSIONS
	7. REFERENCES

