
CUDL Language Semantics: Authority links

Nikitas N. Karanikolas1, Maria Nitsiou2 and Emmanuel J. Yannakoudakis2

1 Technological Educational Institution of Athens, Athens, Greece
{nnk}@teiath.gr

2 Athens University of Economics and Business, Athens, Greece
{mbnit,eyan}@aueb.gr

Abstract. Conceptual Universal Database Language (CUDL) is a new
language designed to manage dynamic database environments, which
conform to the Frame DataBase model (FDB). FDB is a generic database
model (oversubscribe both the Entity-Attribute-Value and the Nested
Relational). CUDL is not only an FDB database language but it is mainly
an agent that provides an abstraction level superior to the logical level.
CUDL permits the users to conceive a database schema where single
fields (tags) accept repetitions (list of values), entertain subfields and also
permit to entertain an entire table in the place of a single field. In this
paper we explain the advanced power of the FDB - CUDL that emanates
from particular improvements to specific parts of the generic FDB model.
More precisely, we investigate ameliorations to the “authority links” set
of FDB and explain the outgrowth of these ameliorations, to define easily
unambiguous and robust relationships between database entities. We also
present the novel ability of the model to manipulate data normalizations
and data explanations.

1 Introduction

In previous work [27], [28] there has been an investigation of dynamically evolving
database environments and corresponding schemata [2], [3], [7], [20], [21], [23],
[25], [26], allowing storage and manipulation of variable number of fields per
record, variable length of fields, data subfields, multiple value fields, etc. The
ultimate goal of Yannakoudakis et al [27], [28] was to make the design and
maintenance of a database a much simpler task for database designers, so as
that they would not have to put in a lot of effort to design the database and
later they would not have to pay extra special attention and work on database
changes. This has resulted in a new framework for the definition of a universal
database schema that eliminates completely the need for reorganisation at both
logical and internal levels, even when the slightest modification in the database
requirements must occur. This new framework was called FDB [27].

The management however and operation of this model (framework) is labo-
rious and time-consuming as the user would have to put in a lot of strain to
understand and be familiar with the use of the proposed model, meaning the
structures and organisation of it (metadata and data), as well as the processes
of the management of elements that compose it. For this reason we focused our

research in finding an efficient and easy way for the communication of users
with the model [19], [22], [9]. This has resulted in creating a language which can
bridge the gap between the user and the FDB model, in other words can help
the user to manipulate the applications that have been created based on the pro-
posed model [29], [30], [15]. This language was called CUDL [29]. By the use of
CUDL, which encapsulates methods with data structures, an FDB management
system can execute complex meta-data and data manipulation operations to re-
trieve and transform information. FDB developers can write complete database
applications with the modest amount of effort [29], [30], [15].

In [15] we introduced the syntax and semantics of the CUDL language. There
we focused mainly in presenting and analysing the statement of value retrieval (in
the schema and the data). In [18] we focused mainly in presenting and analysing
the syntax and semantics of the CUDL statements used for value modification
(in the schema and the data).

1.1 Motivation

The declaration of relationships between data structures is one of the most sig-
nificant tools for the enforcement of data validation procedures in any database
model. The relational model (through its language SQL) has introduced methods
(constraint statements or sub-statements) that permit the declaration of rela-
tionships. The following is an example that contains a relationship declaration
statement [4]:

CREATE TABLE Books (
BookID INT NOT NULL PRIMARY KEY,
AuthorID INT NOT NULL,
BookName VARCHAR(100) NOT NULL,
Price FLOAT NOT NULL

)

CREATE TABLE Authors (
AuthorID INT NOT NULL PRIMARY KEY,
Name VARCHAR(100) NOT NULL

)

ALTER TABLE Books
ADD CONSTRAINT fk author
FOREIGN KEY (AuthorID)
REFERENCES Authors (AuthorID)

The importance of relationships is of so great value that software development
leaders have provided relationship enhancements and also statements (or sub-
statements) for the declaration of relationship enhancements. The following,
modified, sub-statement is a case of such enhancement (provided for MS SQL
Server):

REFERENCES Authors (AuthorID) ON DELETE CASCADE

Obviously the need for relationship declarations exists also for the FDB model
and the CUDL language. This need becomes more significant for the FDB-CUDL
model because the relationships between entities, in most cases, are implemented
without the introduction of new tables (sets in the FDB-CUDL terminology).
Without having methods to declare relationships, the user would face a refuting
stage where the model is self-explained (the user can consult only tag attributes
and subfield attributes and carry off the data model) but the data relationships
are totally undocumented.

To cope with this need, the FDB model introduced the Authority links set.
However, in its primary version the FDB model [27] had some restrictions. Some
improvement was suggested recently [15] but this improvement was far from a
complete solution. In our effort for a complete solution, for the documentation of
data relationships, a conjecture aroused. According to this conjecture, we could
use the relationship declarations structures to also declare authority controls that
reduce the variability of expressions used for the same instance of an identity.

2 Background

2.1 FDB

FDB is a generic database schema, with a specific unique form, where we use only
one database schema for every application. Whatever the entities needed for the
application, no new tables are introduced. We merely define virtual tables (sets)
corresponding to the needed entities having virtual fields (tags) and subfields.
The FDB model schema has the form shown in Table 1 (note that primary keys
are underlined).

The terminology used in FDB is the following:

Entity: a collection of related objects that have certain attributes
Tag: an object used to represent some attribute of an entity
Subfield: an object associated to a specific tag, used to represent a sub-attribute
of the tag that belongs to a certain entity
Compo tag: a composite tag hosting subfields
Simple tag: a tag that does not host subfields
Frame object: A specific instance of an entity, meaning an instance holding
data that describe a certain case (view of the world) that belongs to the entity. It
uniquely identifies this case inside the entity. (We could say that it is analogous
to the tuple in the relational model).

We will display a simple example that concerns the application of a Video
Club where only two entities (Videos and Customer) are needed. The Videos
entity is implemented with an FDB set having seven attributes (tags). The tags

Table 1. The FDB model schema

Languages (language id, lang name)

Datatypes (datatype id, datatype name)

Messages (message id, language, message)

Entities (frame entity id, title)

Tag attributes (entity, tag, title, occurrence, repetition, authority, language,

datatype, length)
Subfield attributes (entity, tag, subfield, title, occurrence, repetition, language,

datatype, length)
Authority links (From entity, Auth tag1, To entity, Auth tag2, mn data loc)

Catalogue (Entity, Frame object number, Frame object label

Temp stamp)
Tag data (Entity, Frame object, Tag, Repetition, Chunk, tdata)

Subfield data (Entity, Frame object, Tag, Tag repetition, Subfield,

Subfld Repetition, Chunk, sdata)

DVD code, Year, Language and Description are simple tags with single values
(without repetitions). It is evident from the names of tags what their contents
are. The tags Title and Category are also simple tags but permit multiple val-
ues (repetitions). In other words, these tags operate as lists of values. A single
instance (frame) of Videos can have more than one title and more than one cat-
egory that belongs to. The last tag is the Actors tag which is a compo tag with
two subfields (Actor1 and Actor2). The Actors tag has a single value (no repe-
titions) and also its subfields accept only a single value. The Customer entity is
implemented with an FDB set having five tags. The tag Cust code is a simple tag
with single values. The tag DVD code is also a simple tag but permits multiple
values (repetitions). This tag is used to hold the codes of the Videos instances
that a specific customer (an instance of Customer) has rent. The tags Name
and Telephone are compo tags and each of them has two subfields (First name
and Last name, Mob phone and Home phone, respectively). Both tags permit a
single value (no repetitions) and also their subfields accept only a single value.
The last tag is the Address tag which is a compo tag with five subfields (Street,
No, Region, City and p.c.). The Address tag accepts repetitions (operate as a
list of addresses) but its subfields accept only single values (for example, each
address has a single city that belongs to). The FDB application schemata are
self-explained, because all the above information is declared in four real FDB
tables, the entities, the tag attributes, the subfield attributes and the Messages
sets. The information, mentioned above, for the Video Club application, is de-
fined in the previously stated four real FDB tables. The contents of the later
three tables, for the Video Club application, are shown in Tables 2a, 2b and
2c.

All the data of the Video Club application are stored in barely two real FDB
schema tables (namely tag data and subfield data). We need no new tables to
store each entity’s individual data.

Table 2a. Content of the Tag attributes for Video Club application

Entity Tag Title Occur- Repetition Authority Language Datatype Length
rence

1 1 2 M R N 1 1 40

1 2 3 M N N 1 2 NULL

1 3 4 M N N 1 5 NULL

1 4 7 M N Y 1 1 6

1 5 8 M R N 1 1 15

1 6 9 M N N 1 1 300

1 7 10 M N N 1 1 10

2 1 24 M N N 1 1 8

2 2 12 M N N 1 5 NULL

2 3 15 M N N 1 5 NULL

2 4 18 M R N 1 5 NULL

2 5 7 M R Y 1 1 6

Table 2b. Content of the Subfield attributes for Video Club application

Entity Tag subfield Title Occur- Repetition Language Datatype Length
rence

1 3 1 5 M N 1 1 40

1 3 2 6 M N 1 1 40

2 2 1 13 M N 1 1 20

2 2 2 14 M N 1 1 20

2 3 1 16 M N 1 2 NULL

2 3 2 17 M N 1 2 NULL

2 4 1 19 M N 1 1 10

2 4 2 20 M N 1 2 NULL

2 4 3 21 M N 1 1 12

2 4 4 22 M N 1 1 10

2 4 5 23 M N 1 2 NULL

2.2 CUDL

CUDL was designed to manage dynamic databases (schema evolution databases)
and also Generic database schemata. The language provides the users a higher
abstraction level than the logical abstraction level and can be exploited by sim-
ple Generic database schemata (like the Entity Attribute Value - EAV) and
more sophisticated ones (like the Frame DataBase - FDB). However, it is mainly
designed to exploit all the structures of the FDB model with convenience and ef-
fectiveness. Without CUDL, the management and operation of Generic database
schemata (like FDB) would require from the user (administrator, developer) a
very good acquaintance of the proposed model, the structures and organisation
of it as well as the processes of the management of elements that compose it.
Otherwise, it would be very difficult and sometimes impossible to carry out even
simple operations like the simplest retrieval of information. With the abstrac-

Table 2c. Content of the Messages for Video Club application

Message id Language Message Message id Language Message
1 1 Videos 13 1 First name
2 1 Title 14 1 Last name
3 1 Year 15 1 Telephone
4 1 Actors 16 1 Mob phone
5 1 Actor1 17 1 Home phone
6 1 Actor2 18 1 Address
7 1 DVD code 19 1 Street
8 1 Category 20 1 No
9 1 Description 21 1 Region
10 1 Language 22 1 City
11 1 Customer 23 1 p.c.
12 1 Name 24 1 cust code

tion level that CUDL introduces, users keep away from difficult programming
tasks that the Generic database schemata impose. For example, there is a need
for many joins (self-joins) or many queries (or views) and then intersections of
the results, in order to retrieve and project data. The CUDL abstraction level
removes any such difficulty and let the users conceive the data with more flexible
structures than the simple fields of the relational model. The users conceive the
data attributes as lists of values, composite values with subfields, etc. Together
with this higher perception of data CUDL language preserves the schema evo-
lution characteristic of Generic database schemata. Now we shall portray one
frame for each of the entities Videos and Customers of the Video Club appli-
cation, the way the user apprehends it (CUDL abstraction level). The frames
shown in Tables 3a and 3b correspond to instances of the entities defined in
Tables 2a, 2b and 2c.

In Tables 4a and 4b we illustrate a more complex example, referring to the
Medical informatics domain.

In previous works [15], [17], [18] we have described the syntax and semantics
for CUDL data definition and data retrieval statements. However a single data
retrieval statement could be helpful for the reader to understand how the CUDL
abstraction level is materialized through statements. The following CUDL data
retrieval statement is used in order to search for doctors with code like ‘I%8’
treating patients with code like ‘A?15’ (in our medical example):

Find data when entity = ‘Incident’ and tag = ‘Patient code’ restr data like
‘A?15’ and tag = ‘Incident doctors’ restr data like ‘I%8’

Table 5 portrays the output of this statement.

Table 3a. A Videos frame object

Title Movie1
A Movie

Year 2003

DVD code Vid01

Category Police movies
Horror movies

Description A description for Movie1. . .
Description for Movie1 continued

Language English

Actors Actor1 Actor2
Al Patsino Robert DeNiro

Table 3b. A Customer frame object

Cust code Cust0002

DVD code Vid02
Vid03

Name First name Last name
Nikitas Salamastras

Telephone Mob phone Home phone
6975106132 2106512345

Address Street No Region City p.c.
Papagoy 43 Ilioupoli Athens 16715

Ag. Spydidonos 1 Aegaleo Athens 12210

3 Liaisons

3.1 Relationships

The simplest form of M:N relationships exists in the example of Customers and
Videos (Section 2.1). There, each customer can rent (during the whole period of
his/her membership) a number of videos and of course each video can be rented
a number of times. This M:N relationship can be easily implemented as a list of

Table 4a. An Incident frame object

Incident code S001

Date started 13/5/2007

Date ended 20/5/2007

Patient code A001

Social institute code T001

Incident doctors I001
I002
I079

Incident Op code Op time Op time Op date Op
operations started ended doctors

E002 13:35 15:05 14/5/2007 I001
I005
I100
I065

E015 12:00 13:00 16/5/2007 I012
I100
I032

Laboratorial LE code LE date LE time LE result
Examinations

UREA 15/5/2007 10:00 32,4 mg/dl
UREA 15/5/2007 14:30 32,5 mg/dl
UREA 16/5/2007 08:00 31,6 mg/dl
CREA 15/5/2007 10:00 1,17 mg/dl
CREA 16/5/2007 08:00 1,08 mg/dl
PROT 15/5/2007 10:00 7,19 g/dl
PROT 16/5/2007 08:00 6,95 g/dl

Radiological RE code RE date RE time File Path
Examinations

U/S Kidney 16/5/2007 12:00 \\FS1\RIS\Uaz34.tif

values hosted by any of the related entities and without the need of an individual
set (table in the relational terminology). However the list of values should be
hosted exclusively in one of the related entities and not both. Otherwise, we
will face redundancy problems. To be more specific, we have two solutions. The
first solution is to use a tag, named for example DVD Code, in the Customer
entity and permit this field to have more than one value (repetitions). This tag
will operate as a list with all the codes of the videos (DVDs) that a particular
customer (represented by the particular frame) has rent. This is also the solution

Table 4b. Two Doctors frame objects

doctor code I001

name Manos

surname Grigoropoulos

doctor code I002

name Theodoros

surname Pachopoulos

adopted and presented in the example of section 2.1. The second solution is to
use a tag, named for example Cust code, in the Videos entity and permit this
field to have more than one value (repetitions). This tag will operate as a list with
all the codes of the customers that have rented a particular video (represented
by the particular frame). Whatever is the adopted M:N solution, it is materiazed
by relating two tags coming from the related entities (one tag from the first and
another tag from the second entity). Obviously, there is a need to document
someway our decision (adoption). This can be happen with an entry in the
Authority links set, which could be something like the triple (Videos.DVD code,
Customer.DVD code, R) or (Videos.Cust code, Customer.Cust code, L). The
first of them defines that there exists a M:N relation between the tag DVD Code
of the Videos entity and the tag DVD code of the entity Customer whereas the
data implementing the relationship are kept in the later of them. The second
triple defines that there exist a M:N relation between the tag Cust code of the
Videos entity and the tag Cust code of the Customer entity whereas the data
implementing the relationship are kept in the former of them.

A second form of M:N relationships exists in our Electronic Patient Record
(EPR) example. For the kind of relationship we are interested to display only the
sets Doctors and Incidents should be examined. Let us assume that the number
of frames existing in the mentioned sets are 6 and 5, respectively. Let us also

Table 5. Results of a CUDL data retrieval statement

Entity Frame object Tag Repetition Data
Incident 1 Patient code 1 A115

Incident doctors 1 I018
2 I128
3 I008

12 Patient code 1 A015
Incident doctors 1 I038

assume that the five frames of the set Incidents have 3, 4, 1, 2 and 2 repetitions
in the “Incident operations” tag, respectively. The Incidents set hosts the tag
“Incident operations” (the operations that a patient undertook during the period
of an incident) which is a tag that hosts subfields and can have repetitions
(meaning none, one or more operations took place). The subfields of the “Incident
operations” are “Op code”, “Op time started”, “Op time ended”, “Op date”
and “Op doctors”. The relationship we are interested is between the “Incident
operations” and the Doctors. There, in each operation of an incident, a number
of doctors are participating and of course each doctor could have participated
in many operations, either in the same incident or in different incidents. The
difference from the previously examined relationship (between Customers and
Videos) is that here we have a M:N relationship between a tag (not a set as
previously) and a set. To emphasize this distinctive relationship we will examine
the possible values of it. In a common M:N relationship (like the one of Customers
with Videos) the maximum number of possible values is the product of the
number of frames of the first set by the number of frames of the second set
(otherwise M x N). Contrariwise here, the maximum number of possible values
is Sum(Mi) x N, where Mi is the number of repetitions (values) of the related
tag in the ith frame (of the set hosting the tag). According to our assumptions,
the number of possible values in this relationship is Sum(3, 4, 1, 2, 2) x 6 =
12 x 6 = 72. We will use the symbol S(M):N to denote the present (second)
form of relationship. Here, there exists also the need to document someway
the relationship between “Incident operations” and Doctors. This can happen
with an entry in the Authority links set. The next triple (Incident.“Incident
operations”.“Op doctors”, Doctors.“doctor code”, L) is such an Authority links
entry. It defines that there exists a S(M):N relation between the subfield “Op
doctors” of the tag “Incident operations” of the entity Incident and the tag
“doctor code” of the entity Doctors and the data implementing the relationship
are kept in the former of them.

In the last (second) case of M:N relationships we have a S(M):N relationship
where the data implementing the relationship are kept in the S(M) side. There
is an apparent question. Is it possible to have an S(M):N relationship where the
data implementing the relationship are kept in the N side? The answer is yes
and in order to make it clear we will provide an alternative design of the EPR
example. In other words we will modify the design of our EPR example. We will
replace the subfield “Op doctors” with the without repetitions subfield “Incident
operation ID”. The later subfield will have unique values for the whole Incident
set, in contrast of having unique values only for the range of a whole frame.
We will introduce another tag, named “Operations participated”, for the entity
“Doctors”. This tag will permit repetitions and will hold the unique values of
the subfield “Incident operation ID” where the doctor participated. In order to
document someway this (third) M:N relationship we will add an entry in the
Authority links set having the form (Incident.“Incident operations”.“Incident
operation ID”, Doctors.“Operations participated”, R). This entry defines that
there exists a S(M):N relation between the subfield “Incident operation ID” of

the tag “Incident operations” of the entity Incident and the tag “Operations
participated” of the entity Doctors and the data implementing the relationship
are kept in the later of them (the N side).

It is obvious that someone will ask about a fourth case of M:N relationships,
do there exist cases that need to be handled with Sum(Mi):Sum(Ni) relations?
The answer is yes. We will put forward the Projects-Employees example that
verifies our utterance. Tables 6a and 6b exhibit two representative frames of
the entities Projects and Employees.

Table 6a. A Projects frame object

Project code Proj077

Title Zeus

Budget 317,000

Actions Actor Action Deadline
E00103 Software analysis 17/10/2007
E00402 Software requirements 22/01/2008
E00702

Program code 23/04/2008
E00903

Table 6b. An Employees frame object.

Emp code E007

Family name Giorgos

Last name Georgiou

Speciality Spec code Spec Descr
E00701 Delphi Programming
E00702 Java Programming
E00703 Rational Rose Usage

It is obvious from table 6 that the tag Speciality (of the Employees set) is a
compo tag that contains the alternative specialities of an employee. It is com-
posed by two subfields (named Spec code and Spec descr, respectively) and its
first subfield (Spec code) has unique values for the whole Employees set. The
subfield Actor (of the tag Actions of the set Projects) permits repetitions and
obtains values originating from the subfield Spec code (of the tag Speciality of

the set Employees). In this example potentially, each repetition of the Actions
tag of each Projects frame can be combined with each repetition of the Spe-
ciality tag of each Employees frame. In other words the maximum number of
feasible combinations is the product of the sum of the number of actions of
all projects (Sum(Mi)) by the sum of the number of specialities of all employ-
ees (Sum(Ni)). The data implementing the relationship are kept in the Actor
subfield (the Sum(Mi) side). In order to document someway this (fourth) M:N
relationship we will add an entry in the Authority links set having the form
(Projects.Actions.Actor, Employees.Speciality.Spec code, L). As in the previous
cases of relationships a simpler denotation for the current one is S(M):S(N).

3.2 Authority controls

The authority control is a concept coming from a long time ago [6], before com-
puters appeared. The idea of an authority control is to reduce the variability
of expressions used to characterize the same identity. Authority control implies
the verification and standardization of access points in a paper or electronic file
[8], [24]. For example the standardization of author names in a library infor-
mation system is a well-known application of authority control. In general an
authority control is implemented with a structure named authority file or au-
thority list. The authority file is a collection of authority records, where each
authority record is used to define a single name, title or entity (from this point
forward we will use the term entity to refer to a single name, title or entity).
Each authority record is composed by four components. These are: the Heading
or the Authorized form, the See references, the See Also references and the Jus-
tification. Heading refers to the form of an entity that has been chosen as the
used form of entering data in an index or catalogue. See references are the other
(alternative) forms of the entity that might appear somewhere. See references
are the forms of the entity that have been deprecated in favor of the Heading.
See Also references, are pointers to other forms of the entity that are authorized.
See Also references are most commonly used to point to earlier or later forms of
an entity. For example See Also can contain the Heading of some journal before
the journal renamed. The Justification is a set of statements for documenting
the sources of information used to determine both the authorized and the dep-
recated forms of the entity. Some of the justification statements cite the title,
publication date and the source. Some others determine the location where the
entity exists, the year of birth of the entity, etc.

It is obvious that an authority file can be easily implemented as an FDB-
CUDL set with four tags: Heading (simple text tag, without repetitions), “See
references” (text tag with repetitions), “See Also references” (text tag with rep-
etitions) and Justification (text tag with repetitions). Table 7 is an example
frame of an authority file implemented as an FDB-CUDL set (named ‘Author
Authority file’).

Having defined an authority file, all is left to do is notify FDB-CUDL with
an authority control relationship. Particularly, which entity - tag (or subfield)

Table 7. An Authority file frame object

Heading Chomsky, N.

See references Avram Noam Chomsky
Noam Chomsky
Chomsky, Noam
Chomsky, N.

See Also references empty

Justification Born December 7, 1928
http://en.wikipedia.org/wiki/Noam Chomsky
http://www.chomsky.info

combination is under whose authority control. This can happen with an en-
try of the form (Entity.Tag, AuthorityName, A) or an entry of the form (En-
tity.Tag.Subfield, AuthorityName, A) in the authority links set. After the last
notification, the CUDL language will interfere transparently and will undertake
every step needed to replace any deprecated form (provided by the user) with
the corresponding Heading.

3.3 Combining Relationships and Authority controls

It is obvious that the form of Authority links presented in table 1, is not ade-
quate to record all the forms of M:N relationships and also record the authority
control relationships. The following, modified, form of Authority links is able to
hold any one of the previously discussed relationships:

Authority links (from entity, from tag, from subfield, to entity, to tag,
to subfield, relationship type)

It remains to specify the range of values of the relationship type attribute.
Table 8 contains the selected range of values and the necessary explanations.
It is obvious that a relationship of type 1 can be reversed to (redeclared as) a
relationship of type 2. The same is true for the couples of relationships 3, 6; 4, 5;
11, 12 and 14, 15. The relationships with types 11, 12, 14 and 15 are special cases
of other relationships. This is reflected by their type value (11 is a special case
of 1, 12 is a special case of 2, and so on). The special cases are needed when we
characterize an instance of the relationship with extra attributes. An example of
such case arises if we replace the simple tag (with repetitions) DVD code of the
entity Customer (see table 3b) with a composite tag, named Rents (see table
9), having three subfields. The meaning of the subfield DVD code is obvious and
the other two subfields (“Start date” and “End date”) add extra information to
each instance of the relationship (rental period). In this case we have to modify

Table 8. The range of values for the attribute relationship type.

type Explanation Symbol

1 Simple M:N, data implementing the relationship are
kept in the M side M:N/L

2 Simple M:N, data implementing the relationship are
kept in the N side M:N/R

3 S(M):N, data implementing the relationship are
kept in the S(M) side S(M):N/L

4 S(M):N, data implementing the relationship are
kept in the N side S(M):N/R

5 N:S(M), data implementing the relationship are
kept in the N side N:S(M)/L

6 N:S(M), data implementing the relationship are
kept in the S(M) side N:S(M)/R

7 S(M):S(N), data implementing the relationship are
kept in the S(M) side S(M):S(N)/L

8 S(M):S(N), data implementing the relationship are
kept in the S(N) side S(M):S(N)/R

11 Simple M:N, data implementing the relationship are
kept in subfield in the M side M:N/L↓

12 Simple M:N, data implementing the relationship are
kept in subfield in the N side M:N/R↓

14 S(M):N, data implementing the relationship are
kept in subfield in the N side S(M):N/R↓

15 N:S(M), data implementing the relationship are
kept in subfield in the N side N:S(M)/L↓

20 Authority control over Tag A/T

21 Authority control over Subfield A/S

the declared relationship (Videos, DVD code, null, Customer, DVD code, null,
2) with (Videos, DVD code, null, Customer, Rents, DVD code, 12).

Table 9. The composite tag Rents.

Rents DVD code Start date End date
Vid02 15/1/2008 17/1/2008
Vid03 20/2/2008 23/2/2008

Some extensions of the CUDL language, in order to be able to declare re-
lationships, are needed. The following are examples of the ‘Add relationship’
statements of CUDL:

Add relationship type = ‘2’ from entity = ‘Videos’ from tag = ‘DVD code’
to entity = ‘Customer’ to tag = ‘DVD code’

Add relationship type = ‘12’ from entity = ‘Videos’ from tag = ‘DVD code’

to entity = ‘Customer’ to tag = ‘Rents’ to subfield = ‘DVD code’
Add relationship type = ‘3’ from entity = ‘Incident’ from tag = ‘Incident

operations’ from subfield = ‘Op doctors’ to entity = ‘Doctors’ to tag =
‘doctor code’

Add relationship type = ‘20’ from entity = ‘Books’ from tag = ‘Author’
to entity = ‘Author Authority File’

4 Discussion - Conclussions

In this paper we investigate the Authority links set of the FDB model, having
a double objective. The first aim is to define easily unambiguous and robust
M:N relationships between database entities, as relationships between database
entities is one of the most important tools for the enforcement of data validation
procedures in any database model. The second aim is to declare authority con-
trols that reduce the variability of expressions used for entities. In other words,
to provide verified and standardized access points of entities and to materialize
the consistent use and maintenance of information.

In the case of the FDB-CUDL model the relationships between entities, in
most cases, are implemented without the introduction of new tables. The M:N
relationships can be easily implemented as a list of values (hosted exclusively
by one of the related entities to avoid redundancy) without the need of a new
separate set.

An authority file can be easily implemented as an FDB-CUDL set with four
tags. Moreover, a notification to FDB-CUDL is required indicating which entity -
tag (or subfield) combination is under whose authority control. This notification
enforces the transparent intervention of the semantic CUDL mechanisms which
undertake any step needed to replace any deprecated form (provided by the user)
with the corresponding authorized form.

All the information concerning relationships and authority controls is lo-
cated in one single set, the Authority links set. This way the user can see all
the links between fields and subfields existing in the data source listed all to-
gether and she/he does not have to search the entire database to find these
links. The design of data source relationships therefore becomes much simpler
(in the CUDL abstraction level) in contrast with the relational or the object
oriented database model. Information retrieval becomes faster because we look
in only one set. The access plans and other implementation and operation de-
tails for relationships and authority controls are handled in a standard way, by
the CUDL language interpreter, and are not reflected in the logical model. This
contrasts with common practice for SQL DBMSs in which performance tuning
often requires changes to the logical model.

References

1. Amini, M.R., Gallinari, P.: Automatic Text Summarization Using Unsupervised
and Semi-supervised Learning. In: PKDD’2001, 5th European Conference on Prin-

ciples of Data Mining and Knowledge Discovery. (2001)
2. Andany, J., Leonard, M., Palisser, C.: Management of schema evolution in

database. In: Proc. of the 17th VLDB Conf., Barcelona (1991) 161–170
3. Bratsberg, S.E.: Unified Class Evolution by Object-Oriented Views. In: proceed-

ings of the Internaltional Conference / the Entity-Relationship Approach, Springer
Verlag. (1992) 423–439

4. Chigrik, A.: Using Microsoft SQL Server Constraints. Available online at:
http://www.mssqlcity.com/Articles/General/using constraints.htm.

5. Chuang, W.T., Yang, J.: Extracting Sentence Segments for Text Summarization:
A Machine Learning Approach. In: SIGIR’2000, 23th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. (2000)

6. Cutter, C.A.: Rules for a Dictionary Catalog. Washington, D.C.: U.S. Government
Printing Office (1904)

7. Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., Madec, J.: Schema and database
evolution in the O2 object database system. In: Proceedings of the 21th Interna-
tional Conference on Very Large Databases (VLDB ’95), Zurich (1995) 170–181

8. Garshol, L.M.: Metadata? Thesauri? Taxonomies? Topic maps! Making sense of
it all. Journal of Information Science 30(4) (2004) 378–391 Available online at:
http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.html.

9. Hennessy, M.: The semantics of programming languages: an elementary introduc-
tion using structural operational semantics. John Wiley & Sons, New York (1990)

10. Karanikolas, N.N., Mantzaris, S.L.: Innovative directions in information retrieval.
In: HERMIS’92, Hellenic Research on Mathematics and Informatics, Athens (1992)

11. Karanikolas, N.N., Skourlas, C.: Computer Assisted Information Resources Navi-
gation. Medical Informatics and the Internet in Medicine 25(2) (2000)

12. Karanikolas, N.N., Skourlas, C.: Shifting from legacy systems to a Data Mart and
Computer Assisted Information Resources Navigation framework. In: 5th Inter-
national Conference On Enterprise Information Systems (ICEIS), Angers, France
(April 23-26, 2003)

13. Karanikolas, N.N., Skourlas, C., Christopoulou, A., Alevizos, T.: Medical Text
Classification based on Text Retrieval techniques. In: Proceedings of the 1ST

International Conference on Medical Informatics and Engineering - 1ST MEDINF,
Craiova Medicala 5 (supplement 3), Craiova, Romania (2003) 375–378

14. Karanikolas, N.N., Skourlas, C.: Naive Rule Induction for Text Classification based
on Key-Phrases. In: Data Mining VI. Data Mining, Text Mining and their Business
Applications. Volume 35 of WIT Transactions on Information and Communication
Technologies, Skiathos, Greece, WIT Press (2005) 175–181

15. Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J., Skourlas, C.: CUDL language
semantics, liven up the FDB data model. In: Eleventh East-European Conference
on Advances in Databases and Information Systems (ADBIS 2007), Varna, Bul-
garia (September 29 - October 03, 2007)

16. Karanikolas, N.N.: Low cost, cross-language and cross-platform Information Re-
trieval and Documentation tools. Computing and Information Technology (CIT)
Journal 15(1) (2007)

17. Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J., Skourlas, C.: Conceptual
Universal Database Language (CUDL) and Enterprise Medical Information Sys-
tems. In: 10th International Conference on Enterprise Information Systems - ICEIS
2008, Barcelona, Spain (12 - 16, June 2008)

18. Karanikolas, N.N., Nitsiou, M., Yannakoudakis, E.J., Skourlas, C.: CUDL language
semantics: updating FDB data. Submitted for publication (2008)

19. Subieta, K.: Semantics of Query Languages for Network Databases. ACM Trans-
actions on Database Systems (TODS) 10(3) (1985) 347 – 394

20. McKenzie, E., Snodgrass, R.: Scheme evolution and the relational algebra. Infor-
mation Systems 15(2) (1990) 207–232

21. Mohamed, A.N., Estublier, J.: Schema evolution in software engineering databases
- a new approach in Adele environment. Computers and Artificial Intelligence 19
(2000)

22. Niemi, T., Christensen, M., Jarvelin, K.: Query language approach based on the
deductive object-oriented database paradigm. Journal of Information & Software
Technology 42(11) (2000) 777–792

23. Roddick, J.F.: Schema evolution in database systems: an annotated bibliography.
SIGMOD Record 21(4) (1992) 35 – 40

24. Savoy, J.: Bibliographic database access using free-text and controlled vocabulary:
an evaluation. Information Processing & Management 41 (2004) 873–890

25. Zdonik, S.B.: Object-oriented type evolution. In Bancilhon, F., Buneman, P., eds.:
Advances in Database Programming Languages, ACM Press / Addison-Wesley
(1990)

26. Zicari, R.: A Framework for Schema Updates In an Object-Oriented Database Sys-
tem. In: Proceedings of the Seventh International Conference on Data Engineering.
(1991) 2 – 13

27. Yannakoudakis, E.J., Tsionos, C.X., Kapetis, C.A.: A new framework for dynam-
ically evolving database environments. Journal of Documentation 55(2) (1999)
144–158

28. Yannakoudakis, E.J., Diamantis, I.K.: Further improvements of the framework
for dynamic evolving of database environments. In: Proceedings of the HERCMA
2001 5th Hellenic - European Conference on Computer Mathematics and its Ap-
plications, Athens, Greece (2001)

29. Yannakoudakis, E.J., Nitsiou, M.: A new conceptual universal database language
(CUDL). In: 2nd International Conference From Scientific Computing to Compu-
tational Engineering (2nd IC-SCCE), Athens, Greece (2006)

30. Yannakoudakis, E.J., Nitsiou, M., Skourlas, C., Karanikolas, N.N.: Tarski alge-
braic operations on the frame database model (FDB). In: Proceedings of the 11th
Panhellenic Conference in Informatics (PCI 2007), Patras, Greece (2007)

