
Journal of Digital Information Management q Volume 7 Number 4 q August 2009244

CUDL Language Semantics: Conditions

Nikitas N. Karanikolas
Department of Informatics
Technological Educational Institution (TEI) of Athens
Ag. Spyridonos street
12210 Aigaleo
Greece
nnk@teiath.gr

AbstrAct: Conceptual Universal Database Language
(CUDL) is a new language designed to manage dynamic
database environments, which conform to the Frame
DataBase model (FDB). FDB is a generic database
model (oversubscribe both the Entity-Attribute-Value
and the Nested Relational). CUDL is not only an FDB
database language but it is mainly an agent that
provides an abstraction level superior to the logical
level. CUDL permits the users to conceive a database
schema where single fields (tags) accept repetitions
(list of values), entertain subfields and also permit to
entertain an entire table in the place of a single field. In
this paper we investigate the conditions, used in both
retrieval and update CUDL statements, and focalize
especially on the range of affection of the update
statements. This becomes necessary since the CUDL
abstraction level reveals the differentiation between
frame objects, tag repetitions and subfield repetitions
and consequently the update statements should
clearly define where the data modifications occur.
This need becomes heavier where some frame object
verifies two (or more) disjunctive conditions and these
conditions specify different range of affection inside
the frame. We provide two solutions where the second
one is an improvement of the first one but it demands
more refined statements and more instructed / skilled
users. Some constructive discussion is also provided.

Categories and Subject Descriptors
H.2.3 [Languages]; H.2.1 [Logical Design]: Data models
General Terms: Interoperability framework, E Government,
European Union E Govt. Applications
Keywords: Dynamically evolving database environments, database
languages, conditions

Received 7 November 2008, Revised 19 January 2009, Accepted
31 January 2009

1. Introduction

In previous work [19], [20] there has been an investigation
of dynamically evolving database environments and
corresponding schemata [1], [2], [3], [4], [5], [6], [12], [13],
[14], [15], [16], [17], [18], allowing storage and manipulation of
variable number of fields per record, variable length of fields,
data subfields, multiple value fields, etc. The ultimate goal of
Yannakoudakis et al [19], [20] was to make the design and
maintenance of a database a much simpler task for database
designers, so as that they would not have to put in a lot of
effort to design the database and later they would not have

to pay extra special attention and work on database changes.
This has resulted in a new framework for the definition of a
universal database schema that eliminates completely the
need for reorganisation at both logical and internal levels, even
when the slightest modification in the database requirements
must occur. This new framework was called FDB [19].
The management however and operation of this model
(framework) is laborious and time-consuming as the user
would have to put in a lot of strain to understand and be familiar
with the use of the proposed model, meaning the structures
and organisation of it (metadata and data), as well as the
processes of the management of elements that compose it.
For this reason we focused our research in finding an efficient
and easy way for the communication of users with the model
[7], [8], [9], [21]. This has resulted in creating a language which
can bridge the gap between the user and the FDB model, in
other words can help the user to manipulate the applications
that have been created based on the proposed model [7], [8],
[9], [21], [22]. This language was called CUDL [21]. By the use
of CUDL, which encapsulates methods with data structures,
an FDB management system can execute complex meta-data
and data manipulation operations to retrieve and transform
information. FDB developers can write complete database
applications with the modest amount of effort [7], [8], [9], [21],
[22].
In [7] we introduced the syntax and semantics of the CUDL
language. There we focused mainly in presenting and
analysing the statement of value retrieval (in the schema and
the data). In [9] we focused mainly in presenting and analysing
the syntax and semantics of the CUDL statements used for
value modification (in the schema and the data). The efficient
building of applications with the CUDL usage has been also
shown [8].

1.1 Motivation

CUDL permits the users to conceive a database schema
as having composite data structures. In CUDL a single field
(tag) can accept repetitions (list of values), entertain subfields
and also permit to entertain an entire table in the place of a
single field. In general, CUDL statements are composed by:
some action (retrieval, update, removal, insertion), the entity
specification, the field of application (which attributes (tags)
are affected) and a range of application (which frame objects
(instances of the entity) are affected). It is obvious that the
range of application part of a CUDL statement is composed
by a combination of conditions over tags and/or subfields. As
a consequence of the composite data structures of the frame
objects, the CUDL language should be equipped with control
handles that will allow users to define precisely where and

Journal of Digital
Information Management

Journal of Digital Information Management q Volume 7 Number 4 q August 2009 245

how the conditions in the range of application part of a CUDL
statement are combined. This is a novel need since the most
proliferated database model (the relational) provides simple
data structures (tuples) and the conditions in the range of
application part (Where part) of its language (SQL) should
be satisfied simply inside the instances (tuples). In CUDL, on
the contrary, if a range of application part contains conditions
for two subfields of the same tag, the user should clarify
whether these conditions should be satisfied in the same
tag repetition (of the same frame object) or can be satisfied
in different tag repetitions (of the same frame object). Some
similar necessitation also arises for the field of application
(which attributes (tags) are affected). The later necessitation
has influence only on update, removal and insertion CUDL
statements and not on retrieval statements.

2. Background

2.1 FDB

FDB is a generic database schema, with a specific unique
form, where we use only one database schema for every
application. Whatever the entities needed for the application,
no new tables are introduced. We merely define virtual tables
corresponding to the needed entities having virtual fields (tags)
and subfields. The FDB model schema has the form shown in
Table 1 (note that primary keys are underlined):

Languages (language_id, lang_name)
Datatypes (datatype_id, datatype_name)
Messages (message_id, language, message)
Entities (frame_entity_id, title)
Tag_attributes (entity, tag, title, occurrence,

repetition, authority, language,
datatype, length)

Subfield_attributes (entity, tag, subfield, title, occurrence,
repetition, language, datatype,
length)

Catalogue (entity, frame_object_number,
frame_object_label, temp_stamp)

Tag_data (entity, frame_object, tag, repetition,
chunk, tdata)

Authority_links (from_entity, from_tag, from_subfield,
to_entity, to_tag, to_subfield,
relationship_type)

Subfield_data (entity, frame_object, tag, tag_
repetion, subfield, subfld_repetition,
chunk, sdata)

Table 1. The FDB model schema (universal schema)

The terminology used in FDB is the following:
Entity: a collection of related objects that have certain
attributes
Tag: an object used to represent some attribute of an entity
Subfield: an object associated to a specific tag, used to
represent a sub-attribute of the tag that belongs to a certain
entity
Compo tag: a composite tag hosting subfields
Simple tag: a tag that does not host subfields
Frame object: A specific instance of an entity, meaning an
instance holding data that describe a certain case (view of the
world) that belongs to the entity. It uniquely identifies this case
inside the entity. (We could say that it is analogous to the tuple
in the relational model).

We will display a simple example that concerns a very simple
database schema that manages the projects of a company.
It is based in a single entity (Projects) which is implemented
with an FDB entity having four attributes (tags). The tags
Project_code, Title, and Budget are simple tags with single
values (without repetitions). It is evident from the names of
tags what their contents are. The last tag is the Actions tag
which is a compo tag with three subfields (Employee, Action
and Deadline) and permits multiple values (repetitions).
Consequently, by having subfields and also repetitions, the tag
Actions is a case of a table in the place of a field. Moreover,
two subfields (namely the Action and the Deadline subfields) of
the Actions tag accept only single values and another subfield
(namely the Employee subfield) permit multiple values (one
or more employees can be charged with the same Action).
The FDB application schemata are self-explained, because
all the above information is declared in four real FDB tables
(sets), the entities, the tag_attributes, the subfield_attributes
and the Messages sets. The information, mentioned above,
for the Projects application, is defined in the previously stated
four real FDB tables. The contents of the later three tables, for
the Projects application, are shown in Tables 2a, 2b and 2c.

Table 2a. Content of the Tag_attributes for the company’s projects
application

Table 2b. Content of the Subfield_attributes for the company’s
projects application

Table 2c. Content of the Messages for the company’s projects
application

All the data of the Projects application are stored in barely two
real FDB schema tables (namely tag_data and subfield_data).
We need no new tables to store each entity’s individual data.

2.2 CUDL

CUDL was designed to manage dynamic databases (schema
evolution databases) and also Generic database schemata.
The language provides the users a higher abstraction level
than the logical abstraction level and can be exploited by
simple Generic database schemata (like the Entity Attribute
Value – EAV) and more sophisticated ones (like the Frame
DataBase – FDB). However, it is mainly designed to exploit
all the structures of the FDB model with convenience and
effectiveness. Without CUDL, the management and operation
of Generic database schemata (like FDB) would require from
the user (administrator, developer) a very good acquaintance
of the proposed model, the structures and organisation of it
as well as the processes of the management of elements that
compose it. Otherwise, it would be very difficult and sometimes

Journal of Digital Information Management q Volume 7 Number 4 q August 2009246

impossible to carry out even simple operations like the simplest
retrieval of information. With the abstraction level that CUDL
introduces, users keep away from difficult programming tasks
that the Generic database schemata impose. For example,
there is a need for many joins (self-joins) or many queries (or
views) and then intersections of the results, in order to retrieve
and project data. The CUDL abstraction level removes any
such difficulty and let the users conceive the data with more
flexible structures than the simple fields of the relational model.
The users conceive the data attributes as lists of values,
composite values with subfields, etc. Together with this higher
perception of data CUDL language preserves the schema
evolution characteristic of Generic database schemata. Now
we shall portray one frame for the entity Projects, in the way
the user apprehends it (CUDL abstraction level). The frame
shown in Table 3 corresponds to an instance of the entity
Projects defined in Tables 2a, 2b and 2c.

Table 3. A Projects frame object

In previous works [7], [8] we have described the syntax
and semantics for CUDL data definition and data retrieval
statements. However a single data retrieval statement could be
helpful for the reader to understand how the CUDL abstraction
level is materialized through statements. The following CUDL
data retrieval statement is used in order to search for Projects
with budget greater than 300,000 and having actions starting
with the word Software:
Find data when entity = ‘Projects’ and tag = ‘Budget’ restr data
> ‘300,000’ and subfield = ‘Action’ restr data like ‘Software%’
and subfield = ‘Employee’ and tag = ‘Title’
This statement also projects the subfield Employee and the
tag Title of the frame objects verifying the restrictions. Table 4
portrays the output of this statement.

Table 4. Results of a CUDL data retrieval statement

Since, the problem analysis and the solutions introduced in
the following sections are based on the semantic forms of the
CUDL update data statements, we will give a brief introduction
of them. All update data statements (‘Alter data’, ‘Delete
data’ and ‘Insert data’) have similar semantic forms and it is
satisfactory to provide the semantic forms for one of them. The
‘Alter data’ statement has the following five semantic forms:
(1) Alter data set <tag> = <new value> <entity specification

condition> <frame specification conditions>
(2) Alter data set <tag> = <new value> <entity specification

condition> <frame & repetition of affected tag specification
conditions>

(3) Alter data set <subfield> = <new value> <entity specification
condition> <frame specification conditions>

(4) Alter data set <subfield> = <new value> <entity specification
condition> <frame & repetition of affected tag specification
conditions>

(5) Alter data set <subfield> = <new value> <entity specification
condition> <frame & repetition of affected tag & repetition
of affected subfield specification conditions>

For the first (1st) semantic form we can provide the following
indicative example:
Alter data set ‘Title’ = ‘Hercules’ when entity = ‘Projects’ and

tag = ‘Project_code’ restr data = ‘Proj095’
This statement sets the title to ‘Hercules’ for the project having
Project_code equal to ‘Proj095’.
Behind the FDB data modelling and the CUDL language there
is our suggestion for moving in a higher level the database
design process [10]. We claim that the Information System
design should not decompose the real world (that we were
called to impress in an Information System) in its fundamental
characteristics and afterwards to proceed with simple
compositions of characteristics that relational model allows.
We claim another approach where the Information System
designers would be able to portray directly the real world in
a model that provides more powerful structures, as those of
the real world. Therefore, there is a necessity for a database
query and manipulation language able to manipulate directly
the composite (real world) data types. The Conceptual
Universal Database Language (CUDL) was designed to satisfy
the mentioned necessitation. We have adopted the Frame
Database Model as the underlying model for implementing
our goal for a data manipulation language able to manipulate
directly composite data types. We preferred the FDB model,
since it is more compact and well defined than other models
(that offers composite data types) and also supports schema
evolution [9]. Some comparison between FDB / CUDL and
other formalisms (either theoretical or industrial) can be found
in [10].

Table 5. Three frame objects of the Projects entity

Journal of Digital Information Management q Volume 7 Number 4 q August 2009 247

3. The Problem and its Solution

3.1 Co-verification of Conditions

Since the CUDL language reveals the differentiation between
frame objects, tag repetitions and subfield repetitions, the
conditions (in the range of application part of statements) should
clearly define where the conditions are co-verified. Otherwise,
the statements are counterintuitive if not ambiguous. In order
to make the problem more easily perceptible we will attempt
its presentation through examples. First we will examine
a complex condition that is constituted by two other simple
conditions which declare restrictions that are applied in two
subfields that emanate from (belong to) the same tag:
Alter data set ‘Employee’ = ‘Petros’ when entity = ‘Projects’

and subfield = ‘Action’ restr data = ‘pruning’ and subfield =
‘Employee’ restr data = ‘Manolis’

Find data when entity = ‘Projects’ and subfield = ‘Action’
restr data = ‘pruning’ and subfield = ‘Employee’ restr data
= ‘Manolis’

In both statements we have the same complex condition
(subfield = ‘Action’ restr data = ‘pruning’ and subfield =
‘Employee’ restr data = ‘Manolis’) and regardless of the action
of the statement (simple retrieval and projection of information
in the case of the Find statement or change of data in the
case of the Alter statement) we need the complex condition to
determine the frame objects where the action of the statement
will take place. This complex condition contains two simple
conditions; one of them concerning the subfield ‘Action’, the
other concerning the subfield ‘Employee’ and both subfields
belong to the tag ‘Actions’ which accepts repetitions. Here
a question arises about whether the values indicated by
the conditions should coexist in the same repetition of the
tag ‘Actions’ or it’s sufficient enough that they exist even in
different repetitions of the tag ‘Actions’, so as the frame
object containing them can be considered as validating the
condition.
If we accept the first point of view then only the first of the
frame objects of table 5 verifies the complex condition. On the
contrary, if we accept the second point of view then the first
two frame objects of table 5 verify the complex condition.
Many readers may think that only the first point of view is
right and that the question we have introduced is excessive
examination. This thought can be brought to a lot of readers of
this article, precisely because they have common sense. But
we can not exclude that some (even few) when expressing
a statement containing the under consideration condition
(subfield = ‘Action’ restr data = ‘pruning’ and subfield =
‘Employee’ restr data = ‘Manolis’) would want the result,
where the statement will take action, to include both the first
two mentioned above frame objects.
In the following we will examine a complex condition containing
restrictions for tags as well as for subfields. Indicatively, let us
presume that the user expresses the following statement:
Find data when entity = ‘Projects’ and (subfield = ‘Employee’

restr data = ‘Manolis’ or tag = ‘Budget’ restr data = ‘200,000’)
and subfield = ‘Deadline’ restr data = ‘30/3/2007’

This statement, based on the Boolean algebra, can be
transcribed in:
Find data when entity = ‘Projects’ and (subfield = ‘Employee’

restr data = ‘Manolis’ and subfield = ‘Deadline’ restr data
= ‘30/3/2007’) or (tag = ‘Budget’ restr data = ‘200,000’ and
subfield = ‘Deadline’ restr data = ‘30/3/2007’)

In this example it is less clear, than the previous couple of
statements (Alter and Find, in the beginning of the current
section), whether the user wants the data ‘Manolis’ and
‘30/3/2007’ to coexist in the same repetition of the tag ‘Actions’
or simply to coexist in the same frame object. This doubt
(ambiguity) comes from the fact that the user, when writing
the statement (before our transcription), kept the subfields
‘Employee’ and ‘Deadline’ in distance.
In general we can say that because frame objects are more
complex objects than the tuples in the relational model,
statements should permit the user to determine the amplitude
where the co-verification of restrictions should be examined.
We could provide such a possibility with an extension of the
CUDL language which would allow the use of indicators. For
example in the next two (imaginary) statements the user uses
a common indicator (I) when he wishes the data ‘Manolis’ and
‘30/3/2007’ to coexist in the same repetition of the tag ‘Actions’
and he uses different indicators (I and J) when he wishes the
data ‘Manolis’ and ‘30/3/2007’ to simply coexist in the frame
object.
Find data when entity = ‘Projects’ and (subfieldI = ‘Employee’

restr data = ‘Manolis’ or tag = ‘Budget’ restr data = ‘200,000’)
and subfieldI = ‘Deadline’ restr data = ‘30/3/2007’

Find data when entity = ‘Projects’ and (subfieldI = ‘Employee’
restr data = ‘Manolis’ or tag = ‘Budget’ restr data = ‘200,000’)
and subfieldJ = ‘Deadline’ restr data = ‘30/3/2007’

3.2 Affected Structures

Another problem, raised from the compound form of frame
objects, is the ambiguity for the field of application (which
tags / subfields are affected) of the update data statements
(‘Alter data’, ‘Delete data’ and ‘Insert data’). For the better
understanding of the problem we will examine four statements
expressed in the CUDL language, in combination with the
facts of table 5:
Alter data set ‘Employee’ = ‘Petros’ when entity = ‘Projects’

and tag = ‘Project_code’ restr data = ‘Proj003’
Alter data set ‘Employee’ = ‘Petros’ when entity = ‘Projects’

and subfield = ‘Action’ restr data = ‘pruning’
Alter data set ‘Employee’ = ‘Petros’ when entity = ‘Projects’

and subfield = ‘Action’ restr data = ‘pruning’ or tag = ‘Project_
code’ restr data = ‘Proj003’

Alter data set ‘Employee’ = ‘Petros’ when entity = ‘Projects’
and subfield = ‘Action’ restr data = ‘grubbing’ or tag =
‘Project_code’ restr data = ‘Proj003’

The first statement contains only one condition which is
verified by only one frame object of the table’s 5 data and
more precisely the last one. In this case we have a statement
of the third semantic form of alter (see section 2.2) which will
result in the replacement of the employees that take part in
any repetition of the tag ‘Actions’ in the frame objects verifying
the condition. Based on our example the modified form of the
last frame object (of table 5) is portrayed in table 6.

Table 6. The 3rd (last) Projects frame object after its modification

Journal of Digital Information Management q Volume 7 Number 4 q August 2009248

Table 7. The 1st and 2nd Projects frame objects after their modification

The second of the previously mentioned statements contains
also only one condition which is verified in two frame objects of
the table’s 5 data, and more precisely the first and the second
frame object. In this case we have a statement of the fourth
semantic form of alter which will result in the replacement of
the employee of a certain repetition of the tag ‘Actions’ in the
frame objects verifying the condition. Based on our example
data (of table 5) the first two frame objects are modified. Their
modified forms are portrayed in table 7.
Now we can examine the third statement containing one complex
condition which is a disjunction of the simple conditions of the
two previous statements. This statement is a combination of
the third as well as the fourth semantic form of alter as the 1st
and 2nd frame objects of table 5 verifies the first sub condition
and determines specific repetitions of the tag ‘actions’ and the
3rd frame object of table 5 verifies the second sub condition
and determines the whole frame object. In this case the update
in the two frame objects verifying the first sub condition will
take place only in the specified repetitions of the tag ‘actions’
and in the frame object verifying the second sub condition the
changing will take place in every repetition of the tag ‘actions’.
So far there is no problem. The problem occurs when a CUDL
statement contains two disjunctive sub conditions leading in
different semantic forms and there are frame objects verifying
both sub conditions. The last (fourth) statement of the previously
mentioned statements causes such a problem. More precisely
the first sub condition determines a certain repetition (row) of
the tag ‘Actions’ for each one of the three frame objects (of
table 5) and the second sub condition determines the whole
3rd frame object. Here, we face the problem on the way of
handling the third frame object which verifies at the same time
both sub conditions, therefore causing a dilemma whether it
will be dealt as a fourth semantic form (and the change will
take place in the first repetition of the tag ‘Actions’) or it will be
dealt as a third semantic form (and the change will take place
in every repetition of the tag ‘Actions’).
In this dilemma (whether it will be dealt as a fourth or a third
semantic form) and in every similar dilemma (choice between
the fourth and fifth, third and fifth semantic form, etc) a
solution can be easily given by the definition of the rule “we
handle every frame object based on the biggest semantic
form determined by the disjunctive conditions which verify it”
or alternatively by the definition of the rule “we handle every
frame object based on the smallest semantic form determined
by the disjunctive conditions which verify it”. Therefore, the
problem is simplified in a transcription of the original complex

condition of the CUDL statement in “disjunctive primitive
subqueries”. Here the adjective “primitive” is used to indicate
that the sub conditions do not contain by themselves any more
disjunctions. Having determined the “disjunctive primitive
subqueries” (DPSs) of the original complex condition we can
easily find which DPSs are verified by any specific frame
object that verifies the whole condition. Therefore we are in a
position to know which semantic form (or forms) apply in each
frame object. Afterwards by applying the defined rule we can
go on changing the data. For example, let us assume that we
have the next CUDL statement:
Alter data set ‘Deadline’ = ‘30/4/2007’ when entity = ‘Projects’

and (subfield = ‘Employee’ restr data = ‘Manolis’ or tag =
‘Budget’ restr data = ‘200,000’) and tag = ‘Title’ restr data
like ‘K%’

This statement can be transcribed in:
Alter data set ‘Deadline’ = ‘30/4/2007’ when entity = ‘Projects’

and (subfield = ‘Employee’ restr data = ‘Manolis’ and tag
= ‘Title’ restr data like ‘K%’) or (tag = ‘Budget’ restr data =
‘200,000’ and tag = ‘Title’ restr data like ‘K%’)

In this form we have two disjunctive primitive subqueries. The
first one (subfield = ‘Employee’ restr data = ‘Manolis’ and tag
= ‘Title’ restr data like ‘K%’) determines the fourth semantic
form of alter, whereas the second (tag = ‘Budget’ restr data
= ‘200,000’ and tag = ‘Title’ restr data like ‘K%’) determines
the third semantic form. If there exists one frame object
verifying both the two disjunctive primitive subqueries and
the manipulation is done based on the bigger semantic form
then the change will take place only in the repetition of the tag
‘Actions’ having in its subfield ‘Employee’ the value ‘Manolis’.
On the contrary, if the manipulation is done based on the
smaller semantic form then the change will take place in every
repetition of the tag ‘Actions’ of the frame object verifying both
disjunctive primitive subqueries.

3.3 Naive Solution

The needs to determine where the conditions are co-verified
as well as to transcript the original condition in disjunctive
primitive subqueries are raised very often. The next example
of a statement in the CUDL language shows both needs:
Alter data set ‘Employee’ = ‘Petros’ when entity = ‘Projects’

and (subfield = ‘Employee’ restr data = ‘Manolis’ or tag =
‘Budget’ restr data = ‘200,000’) and subfield = ‘Deadline’
restr data = ‘30/3/2007’

In this statement it is important the existence of a mechanism
to transcript the original condition in disjunctive primitive
subqueries by the system as well as the existence of a
mechanism which will allow the user to indicate whether the
values ‘Manolis’ and ‘30/3/2007’ should coexist in the same
repetition of the tag ‘Actions’ or it is sufficient enough to exist
even in different repetitions of the tag ‘Actions’.
The simplest and therefore the most limited in possibilities
solution is presented afterwards. This solution can be sufficient
enough in a practical level and moreover to constitute a metre
of comparison for other following extensions of the CUDL
language trying to meet in a better way the need of defining
where the conditions are co-verified as well as the transcription
of the original conditions in “disjunctive primitive subqueries”.
According to this solution the CUDL language does not
allow the use of parentheses and the only allowed Boolean
operators are the conjunction (and) and the disjunction (or)
operators. Moreover the or operator has smaller precedence
than the operator and. Therefore a condition of the form “x and
y or z and w” is dealt as if it was “(x and y) or (z and w)”. As an
example we can provide the next statement:

Journal of Digital Information Management q Volume 7 Number 4 q August 2009 249

Find data when entity = ‘Projects’ and tag = ‘Title’ restr data
like ‘A%’ and tag = ‘Budget’ restr data > ‘200,000’ or tag =
‘Project_code’ restr data like ‘Proj??1’ and tag = ‘Title’ restr
data like ‘H%’

and expect to be processed by the system as if it was:
Find data when entity = ‘Projects’ and (tag = ‘Title’ restr data

like ‘A%’ and tag = ‘Budget’ restr data > ‘200,000’) or (tag =
‘Project_code’ restr data like ‘Proj??1’ and tag = ‘Title’ restr
data like ‘H%’)

Practically, the user expresses only conditions (following the
entity specification condition) of the form:
x1 and x2 and … and xp or y1 and y2 and … yq or … or w1 and
w2 and … and wr

and expects them to be processed by the system as if it was:
(x1 and x2 and … and xp) or (y1 and y2 and … yq) or … or (w1
and w2 and … and wr)
What we really achieve with the previously mentioned syntactical
restrictions is to enforce the user to write statements by using
directly “disjunctive primitive subqueries” and therefore not to
need any transcription for these statements from the system.
As far as the problem of where the conditions are co-verified
is concerned, we define that in each one of the disjunctive
primitive subqueries, its partial conditions are dependent on
one another, that is to say that they have to be verified in the
smallest structure of data. On the contrary the application (the
place of verification) of conditions of one disjunctive primitive
subquery is independent from the application of conditions of
any other disjunctive primitive subquery (DPS). To make these
clear, we examine the next condition:
tag = ‘Budget’ restr data > ‘240,000’ and subfield = ‘Employee’
restr data = ‘Giorgos’ or subfield = ‘Employee’ restr data =
‘Manolis’ and subfield = ‘Action’ restr data = ‘pruning’ or
subfield = ‘Employee’ restr data = ‘Giorgos’ and subfield =
‘Action’ restr data = ‘grubbing’
For the first DPS the smallest structure of data that can
accommodate the tag ‘Budget’ and the subfield ‘Employee’
is the whole frame object. In our example data (of table 5),
the second frame object verifies this (first) DPS. For the
second and third DPS the smallest structure of data that can
accommodate the subfield ‘Employee’ and the subfield ‘Action’
is a repetition of tag ‘Actions’. In our example data, the third
repetition of tag ‘Actions’ of the first frame object verifies the
second DPS and the first repetition of tag ‘Actions’ of the first
frame object verifies the third DPS.

4. An Advanced Solution

The naive version (solution) of CUDL is an easily
understandable confrontation with satisfactorily expressive
power. However, more expressive versions can be designed
permitting more refined statements, possibly with overhead
in the syntax of statements and with requirements for more
instructed (skilled) users. Of course the naive CUDL language
version is not a toy database language and can be adopted as
the dominant database language for database management
systems adopting and afford the CUDL abstraction level. In this
section we will provide a more expressive than the naive CUDL
language version as a first step to open the researh for more
refined languages for handling composite data. We will name
this advanced CUDL language as “CUDL naive + indices” and
shortly “CUDL npi”. “CUDL npi” offers to the user, more than
what the Naive CUDL version offers, control handles that will
allow them to define precisely where and how the conditions
of a CUDL statement are co-verified. The handles are optional
indices that the user can apply on subfields (only). The form of

indices is single Latin letters in square brackets and can follow
immediately after the reserved word “subfield”. The usage
of the same index in two conditions in the same disjunctive
primitive subquery entails that the requested restrictions
must be verified in the same repetition of the tag hosting the
coindexed subfields. Obviously, the usage of the same index
(in two conditions in the same disjunctive primitive subquery)
for subfields that don’t belong in the same tag is a mistake
and should be handled accordingly. In order to make clear the
usage of indices we will provide indicative examples and will
discuss them in combination with their semantic forms. The
data against which the examples are examined are presented
in tables 3 and 5.
Alter data set Employee = ‘Nikitas’ when entity = ‘Projects’

and subfield[i] = ‘Employee’ restr data = ‘Petros’ and
subfield[i] = ‘Deadline’ restr data = ‘22/01/2008’

In this statement we express the requirement that the
employee assigned some action to be named ‘Petros’ and
the deadline for the same action to be ‘22/01/2008’. In other
words we require that both values ‘Petros’ and ‘22/01/2008’ to
coexist in the same repetition of tag ‘Actions’. Moreover, since
the ‘Employee’ subfield participates in the conditions part and
also it is the under modification data substructure (of frame
object), it defines also which is the concrete repetition of the
subfield that will be updated (modified). Here we have a fifth
semantic form of ‘Alter data’ statement. Obviously, the update
will take place in the first repetition of subfield ‘Employee’, in
the second repetition of tag ‘Actions’, in the frame object of
table 3. This statement can also be expressed with the naive
solution by simply removing the indices.

Alter data set Employee = ‘Nikitas’ when entity = ‘Projects’
and subfield[i] = ‘Action’ restr data = ‘watering’ and subfield[i]
= ‘Deadline’ restr data = ‘20/04/2007’

In this statement we require that both values ‘watering’ and
‘20/04/2007’ to coexist in the same repetition of tag ‘Actions’.
However, since the under modification subfield ‘Employee’
does not participate in the conditions part, the statement does
not specify any concrete repetition of the under modification
subfield. That means that the modification applies in any
repetition of the under modification subfield, inside the affected
tag repetition. Here we have a fourth semantic form of ‘Alter
data’ statement. Obviously, the update will take place in any
repetition of subfield ‘Employee’, in the second repetition of
tag ‘Actions’, in the second frame object of table 5 (the one
with ‘Project_code’ equal to ‘Proj002’). This statement can
also be expressed with the naive solution by simply removing
the indices.

Alter data set Employee = ‘Nikitas’ when entity = ‘Projects’
and tag = ‘Budget’ restr data = ‘200,000’

In this statement we require that the modifications (of subfield
‘Employee’) will take place in frame objects having tag ‘Budget’
equal to ‘200,000’. We don’t provide any restriction that could
narrow the update to specific repetitions of tag ‘Actions’ in the
modified frame objects. That means that every repetition of
subfield ‘Employee’, in every repetition of tag ‘Actions’, in the
frame objects having tag ‘Budget’ equal to ‘200,000’, will be
modified. Here we have a third semantic form of ‘Alter data’
statement. Obviously, the update will take place in any value
of subfield ‘Employee’, in the first frame object of table 5 (the
one with ‘Project_code’ equal to ‘Proj001’). This statement is
the same in the present and in the naive version of CUDL.

Alter data set Employee = ‘Nikitas’ when entity = ‘Projects’
and subfield[i] = ‘Action’ restr data = ‘watering’ and subfield[j]
= ‘Deadline’ restr data = ‘20/03/2007’

Journal of Digital Information Management q Volume 7 Number 4 q August 2009250

In this statement we require that values ‘watering’ and
‘20/03/2007’ to coexist in the same frame object, without
requiring to coexist in the same repetition of tag ‘Actions’.
Since the statement does not focus the restrictions in any
substructure of frames, the modifications of subfield ‘Employee’
can not also be focused in specific tag or specific subfield
repetitions. Here we have a third semantic form of ‘Alter data’
statement. Obviously, the update will take place in any value
of subfield ‘Employee’, in the third frame object of table 5 (the
one with ‘Project_code’ equal to ‘Proj003’). This statement can
not be expressed with the naive version of CUDL.

Alter data set Employee = ‘Nikitas’ when entity = ‘Projects’
and subfield[i] = ‘Employee’ restr data = ‘Manolis’ and
subfield[j] = ‘Action’ restr data = ‘pruning’ and subfield[k] =
‘Deadline’ restr data = ‘30/03/2007’

In this statement we impose three restrictions on subfields of
the tag ‘Actions’ but do not require being satisfied (coexist) in
the same tag repetition. This statement, as the previous, does
not focus the restrictions in any substructure of frames and
consequently the modifications of subfield ‘Employee’ cannot
be focused in any specific tag or any specific subfield repetition.
Here we have a third semantic form of ‘Alter data’ statement.
Obviously, the update will take place in any value of subfield
‘Employee’, in the first and second frame objects of table 5
(the frame objects with ‘Project_code’ equal to ‘Proj001’ and
‘Proj002’, respectively). This is another statement that can not
be expressed with the naive version of CUDL.
Alter data set Employee = ‘Nikitas’ when entity = ‘Projects’

and subfield[i] = ‘Employee’ restr data = ‘Manolis’ and
subfield[i] = ‘Action’ restr data = ‘pruning’ and subfield[j] =
‘Deadline’ restr data = ‘30/03/2007’

In this statement we impose three restrictions on subfields
of the tag ‘Actions’ and require two of them being satisfied
(coexist) in the same tag repetition but do not require the third
of them being satisfied in the same tag repetition. The condition
of this statement is satisfied by the first frame object of table
5 (the frame object with ‘Project_code’ equal to ‘Proj001’)
because in its third repetition of tag ‘Actions’ the values of
Manolis’ and ‘pruning’ coexist and the value ‘30/03/2007’
exists in the second repetition of tag ‘Actions’. This statement,
as the previous two ones, does not focus the restrictions in any
substructure of frames and consequently the modifications of
subfield ‘Employee’ cannot be focused in any specific tag or

any specific subfield repetition. Here we have a third semantic
form of ‘Alter data’ statement. Obviously, the update will take
place in any value of subfield ‘Employee’, in the first frame
object of table 5. This is another statement that cannot be
expressed with the naive version of CUDL.
There is a simple rule for distinguishing the semantic form of
any CUDL subfield modification statement that reveals from the
above examples. This rule applies whenever a DPS contains
restrictions on two or more subfields of the tag that hosts the
modified subfield. This rule can be adapted for any subfield
data modification (update, removal and insertion) statement.
Here we will present it in regard to the ‘Alter data set <subfield
name> = …’ (update) statement:
- Whenever the conditions in the DPS does not contain indices

on the modified and its brethren subfields or the indices are
same and the modified subfield is included in some of the
DPS’s conditions then the semantic form is the fifth.

- Whenever the conditions in the DPS does not contain indices
on the brethren subfields or the indices are same and the
modified subfield is not included in any of the conditions
composing the DPS then the semantic form is the fourth.

- In any other case the semantic form is the third.

4.1 Combining DPSs in the Same Frame Object

In section 3.2 we had come up against a dilemma concerning
the selection of the semantic form when a frame object verifies
two (or more DPSs) with different semantic forms. There, we
had given two alternative rules, namely: “we handle every
frame object based on the biggest semantic form determined
by the disjunctive conditions which verify it” or “we handle every
frame object based on the smallest semantic form determined
by the disjunctive conditions which verify it”. Consequently,
the dilemma solution is a mater of selection between two
alternative rules. However this alternative rules, nonetheless
they constitute the basis of the general idea, they don’t cover
all the possible DPS’s semantic forms combinations. Thus,
they should be refined. The refinement follows:
a. The DPSs combination is stepped. Firstly, the first DPS

is combined with the second. Next, the result of the first
combination is combined with the third DPS. We continue in
a similar way if more than three DPS exist.

b. The alternative combination rules (refined) are:

Nested affected structures No intersection of affected structures
Smallest
semantic
form

Select the wider affected structure (e.g. select
the affected structure of the DPS having 3rd
semantic form, whenever we combine one
DPS of the third with a DPS of the fourth
semantic form)

Select the union of the affected structures of the combined DPS
(e.g. if the affected structure of one DPS is the 2nd repetition of
some tag ‘X’ and the affected structure of the second DPS is the
4th repetition of the same tag then the affected structure of the
combined DPS is the 2nd plus the 4th tag repetition of tag ‘X’)

Biggest
semantic
form

Select the narrower affected structure (e.g.
select the affected structure of the DPS
having 4th semantic form, whenever we
combine one DPS of the third with a DPS of
the fourth semantic form)

same

Of course the combination rules operate and in more
complicated than simple nesting and no intersection cases.
The following examples make it clear. (The indices used in
the examples reflect the semantic forms, namely: 3 when the
affected structure is the whole frame, 4 when the affected
structure is a concrete tag repetition, 5 when the affected
structure is a concrete subfield repetition.)

Example 1:
Let us assume that we have to combine with (for
example the third and fifth repetition of some tag with the fourth
subfield repetition of the third tag repetition of the same tag)
then
- In case of activation of the smallest semantic form rule the

affected structure remains

Journal of Digital Information Management q Volume 7 Number 4 q August 2009 251

- In case of activation of the biggest semantic form rule the
affected structure becomes

Example 2:

Let us assume that we have to combine with
(for example the third and fifth repetition of some tag with the
third and sixth tag repetition of the same tag) then
- In both rules, the affected structure becomes

Example 3:

Let us assume that we have to combine with
and moreover is a subfield repetition of but is not
subfield repetition of any of or (for example the third and
fifth repetition of some tag with the second subfield repetition
of the third repetition of the same tag and the first subfield
repetition of the seventh repetition of the same tag) then
- In case of activation of the smallest semantic form rule the

affected structure becomes
- In case of activation of the biggest semantic form rule the

affected structure becomes

5. Conclusions

In this paper we have addressed the problem of co verification
of conditions in the CUDL language, designed to manage
dynamic database environments such as the FDB model.
We have shown the difficulties that arise from the evaluation
of conditions into the composite data structures of the FDB
model. We have made clear why this problem appears
and why it is important. We have provided two solutions to
address this problem. The first one (the “naive” one) is more
easily understandable and does not impose complexity to the
language’s syntax. The second one is an improvement of the
first but more demanding. It requires more advanced users
and very carefully written CUDL language statements.

References

[1] Andany, J., Leonard, M., Palisser, C (1991). Management
of schema evolution in database. In Proc. of the 17th VLDB
Conf., Barcelona, p. 161-170
[2] Banerjee, J., Kim, W., Kim, H. and Korth H. F (1987).
Semantics and Implementation of Schema: Evolution in
Object-Oriented Databases. ACM SIGMOD 16 (3) 311 - 322
[3] Bertino, E (1992). A View Mechanism for Object-Oriented
Databases. In: Pirotte, A., Delobel, C. and Gottlob G. (eds):
Proc. of Advances in Database Technology (EDBT’92) - 3rd
international Conference on Extending Database Technology,
Lecture Notes in Computer Science, 580, Springer, p. 136-
151
[4] Bratsberg., S. E (1992). Unified Class Evolution by
Object-Oriented Views, In proceedings of the Internaltional
Conference / the Entity-Relationship Approach, Springer
Verlag, p. 423-439
[5] Clamen., S. M (1994). Schema Evolution and Integration.
Distributed and Parallel Databases, Special issue on
distributed/parallel database object management 2 (1) 101-
126
[6] Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., Madec,
J (1995). Schema and database evolution in the O2 object
database system. Proceedings of the 21th International
Conference on Very Large Databases (VLDB ‘95), Zurich, p.
170-181

[7] Karanikolas, N. N., Nitsiou, M., Yannakoudakis, E. J.,
Skourlas, C (2007). CUDL language semantics, liven up the
FDB data model. Ιn Eleventh East-European Conference on
Advances in Databases and Information Systems (ADBIS
2007), September 29 - October 03, 2007, Varna, Bulgaria
[8] Karanikolas, N. N., Nitsiou, M., Yannakoudakis, E. J.,
Skourlas, C (2008). Conceptual Universal Database Language
(CUDL) and Enterprise Medical Information Systems. In 10th

International Conference On Enterprise Information Systems
(ICEIS’2008), June 12-16, 2008, Barcelona, Spain.
[9] Karanikolas, N. N., Nitsiou, M., Yannakoudakis, E. J.,
Skourlas, C (2009). CUDL Language Semantics: Updating
Data. Journal of Systems and Software 82 (6) 947-962,
doi:10.1016/j.jss.2008.12.031
[10] Karanikolas, N. N., Vassilakopoulos, M. Gr (2009).
Conceptual Universal Database Language: Moving Up
the Database Design levels. In Thirteen East-European
Conference on Advances in Databases and Information
Systems (ADBIS 2009), September 7-11, 2009, Riga, Latvia.
[11] Kazimierz, S (1985). Semantics of Query Languages for
Network Databases. ACM Transactions on Database Systems
(TODS) 10 (3) 347 – 394
[12] McKenzie, E., Snodgrass, R (1990). Scheme evolution
and the relational algebra. Information Systems, 15 (2) 207–
232
[13] Mohamed A.-N., Estublier, J (2000). Schema evolution in
software engineering databases - a new approach in Adele
environment. Computers and Artificial Intelligence, 19 (2)
[14] Monk, S., Sommerville, I (1993). Schema Evolution in OODBs
Using Class Versioning. SIGMOD Record 22 (3) 16 - 22
[15] Roddick, J. F (1992). Schema evolution in database
systems: an annotated bibliography. SIGMOD Record 21 (4)
35 - 40
[16] Skarra, A. H., Zdonik, S. B (1987). Type Evolution in an
Object-Oriented Database. In Mit Press Series. Computer
Systems, Research directions in object-oriented programming,
Cambridge, MA, USA, MIT Press, p. 393 - 416
[17] Zdonik, S. B (1990). Object-Oriented Type Evolution. In
Advances in Database Programming Languages, Addison-
Wesley
[18] Zicari, R (1991). A Framework for Schema Updates in
an Object-Oriented Database System. In Proceedings of the
Seventh International Conference on Data Engineering, p. 2
-13
[19] Yannakoudakis, E. J., Tsionos, C. X., Kapetis, C. A
(1999). A new framework for dynamically evolving database
environments. Journal of Documentation 55 (2) 144-158.
[20] Yannakoudakis, E. J., Diamantis, I. K (2001). Further
improvements of the Framework for Dynamic Evolving of
Database environments. In Proceeding of the 5th Hellenic
– European Conference on Computer Mathematics and its
Applications (HERCMA 2001), Athens, Greece
[21] Yannakoudakis E. J., Nitsiou, M (2006). A new conceptual
universal database language (CUDL). In Second International
Conference From Scientific Computing to Computational
Engineering (2nd IC-SCCE), Athens, Greece
[22] Yannakoudakis E. J., Nitsiou, M., Skourlas, C.,
Karanikolas, N. N., 2007. Tarski algebraic operations on
the frame database model (FDB). In proceedings of the 11th
Panhellenic Conference in Informatics (PCI 2007), Patras,
Greece

