
Stemmer Builder suite Manual

This is the manual for the Stemmer Builder suite. It is a suite of software programs to facilitate the experts

to build stemmers (for some target language) without writing any line of program code. The suite is created

by professor Nikitas N. Karanikolas (University of West Attica, Dept. of Informatics and Computer

Enfineering). It has been used (till now) for the following languages: Albanian, Polish and Serbian.

Documentation

It is based on the ideas presented in the following papers:

B34
Nikitas N. Karanikolas, A methodology for building simple but robust stemmers without language

knowledge: Overview, data model and ranking algorithm. CompSysTech'2013: 14th International

Conference on Computer Systems and Technologies, June 2013, Ruse, Bulgaria. ACM ICPS,

doi:10.1145/2516775.2516783.

A13
Nikitas N. Karanikolas. Supervised learning for building stemmers. Journal of Information Science, Vol. 41

(3), pp. 315-328, 2015, doi:10.1177/0165551515572528.

A10
Nikitas N. Karanikolas. A methodology for building simple but robust stemmers without language

knowledge: Stemmer configuration. Procedia, Social and Behavioral Sciences, vol. 147, pp. 370-375,

doi:10.1016/j.sbspro.2014.07.113.

See also the personal web page of author: http://users.uniwa.gr/nnk/papers/paper_index.htm

The suite uses:

The 2nd Builder (presented in A13) for forming (configuring) a trial stemmer

The Stemmer Evaluator (presented in B34) for evaluating a trial stemmer

A deprecated builder (1st Builder) is presented in A10. It is not any more used.

The suite has some other new facilities:

Language Manager

Experts Manager

Stem Editor

Code Builder

The whole suite is composed by:

 Language Manager

 Experts Manager

 Stem Editor

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

 2nd Builder for forming (configuring) trial stemmers

 Stemmer Evaluator for evaluating trial stemmers

 Code Builder

and accompanied by

 Usage of java compiler (javac) to compile the source code and produce the executable stemmer

 Usage of java run time (java) for running the executable stemmer

Language Manager

Language manager is a configuration tool which is used to setup another language or another trial for some

language. With language manager we can:

 Setup a new configuration for working with some language. This creates a new folder and a new

database for holding (persisting) any data (details) for the language. The Language Manager is able to

handle various alternatives for the same language, by using alternative names. For example, we can

define two alternative setups for the Albanian language by using the names Alban1 and Alban2.

 Define the suffixes list which will be used for stemming

 Define the set of words that will be used for building primary stemmer, expressing arguments againts

or for verifying the primary stemmers results and for evaluating stemmers (primary and other trial

stemmers).

 Define the couples (digraph vowels, digraph consonants and diphongs) that the language might have.

 Define letters with special usage.

 Automate the process of primary stemmer building.

The main interface of Language manager is depicted in the following screenshot:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

To invoke Language Manager:

C:\stemSuite\bin> java –jar languageManager.jar

(assume that jar files are in folder bin under the basic stemSuite folder)

Language Manager / Manage Database

The “Manage Database” button brings in front the following dialog where the user can activate one of the

existing database (language) setups or create a new database (a new language) setup.

In order to create a language setup, fill the empty textbox with the name you prefer and press the button

“create”.

In order to select a language setup, select one of the listed in the Databases list box and press the button

“Set Active Database”.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Language Manager / Add Suffixes

The “Add Suffixes” button of the main Language Manager dialog brings in front the following dialog. In this

(the following) dialog the user can define which are the suffixes used for building stemmers. With the

suffixes dialog, the user type a suffix in the empty textfield and presses the button “Add New Suffix”. The

new Suffix is appended in the suffixes list box. The user repeat the sequence of steps, once per suffix. When

the user finishes with the suffixes, he/she has to press the button “Save” to persist the list of suffixes.

The user can build the list in more than one usages of the dialog. In the first usage the user defines some

suffixes and then use button “Save” to persist. In the following usages, the user has to load the existing

suffixes (use button “load”), next define some more suffixes and next persist the updated list of suffixes (by

pressing the button “Save”). After a number of dialog usages the list of suffixes is completed.

Button “Delete” can be used to remove the selected suffix. Button “Clear” removes all the entries in the

suffix list.

The list of suffixes is persisted in a file with path:

C:\stemSuite\<language>\suffixlist.txt

For example:

C:\stemSuite\Alban1\suffixlist.txt

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Language Manager / Add Words

The “Add Words” button of the main Language Manager dialog brings in front the following dialog. In this

(the following) dialog the user can define the set of words that will be used for building the primary

stemmer’s stems and for each other trial stemmer’s stems. This set of words together with the results

(stems) of the primary semmer’s operation will be later presented to the experts who are responsible for

expressing their arguments (complaints and confirmations) against the primary stemmer’s stems. If the

experts are not speakers of the taarget language, the original words should be inserted to this dialog

together with translations to the language that experts speak. The user should provide the original word

(left empty text box), its translation (right empty text box) and press the button “Add New Word”.

Repeating this procedure, will produce the list of words (with translations). This list is the resource needed

for system’s creation of primary stemmer’s stems and also this list will permit experts to express their

arguments.

The user can build the list in more than one usages of the dialog. In the first usage the user defines some

words whith their translations and then use button “Save to File” to persist in file. In the following usages,

the user has to load the existing suffixes (use button “Load from File”), next define some more couples

(words with translations) and next persist the updated list of words (by pressing the button “Save to File”).

After a number of dialog usages the list of words is completed.

The button “Save to DB” is nedded in order to persist the words (actualy couples of word – translation) into

the database. This is a required step because this resource should exist into the database. The following is a

small excerpt of the work behind the “Save to DB” button (we have replaced translations with ‘…’):

INSERT INTO words values (1, 'ABANDONOHET', '…');

INSERT INTO words values (2, 'ABAS', '…');

INSERT INTO words values (3, 'ABBAS', '…');

INSERT INTO words values (4, 'ABDI', '…');

INSERT INTO words values (5, 'ABSIDË', '…');

INSERT INTO words values (6, 'ABSOLUTISHT', '…');

INSERT INTO words values (7, 'ABUZIMI', '…');

INSERT INTO words values (8, 'ABUZIMIN', '…');

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Button “Delete” can be used to remove the selected word – translation from the list. Button “Clear”

removes all the entries from the word – translation list.

The list of word-translation couples is persisted in a file with path:

C:\stemSuite\<language>\words.txt

For example:

C:\stemSuite\Alban1\words.txt

The list of word-translation couples is persisted also in table words of a database named:

stemSuite_<language>

For example:

stemSuite_Alban1

Language Manager / Add Couples

With the same methodology as the one used for the suffixes, the next dialog defines the couples of letters

having a single phoneme (vowel digraphs, consonant digraphs and diphthongs).

The list of couples is persisted in a file with path:

C:\stemSuite\<language>\coupleslist.txt

For example:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

C:\stemSuite\Alban1\coupleslist.txt

Language Manager / Add Letters On Border

With the same methodology as the one used for the suffixes, the next dialog defines some letters (single

graphs) that need special handling.

The list of special letters (letters on border) is persisted in a file with path:

C:\stemSuite\<language>\lettersOnBorderlist.txt

For example:

C:\stemSuite\Alban1\lettersOnBorderlist.txt

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Language Manager / Make Primary Stems

The last button provided by the Language Manager dialog is the button. This

button does not invoke any graphical interface. It works silently and creates the primary stemmer’s stem

which are peristed in the database. So this is the first automation of task used to be done manually. Instead

of wtitting a computer program that read words and remove the longest matching suffix (among the

defined for the language suffixes), then running this program to get stems for each defined (for the

language) word and finaly convering the output into “insert into…” sql statements for inserting the results

(the stems) into database, we simply press the button “Make Primary Stems”. Following the example of

words given previously, the last step behind “Make Primary Stems” button will be:

INSERT INTO sources values (1, 'Primary Stemmer\'s stems', 'STEMMER');

INSERT INTO stems values (1, 1, 'ABANDON');

INSERT INTO stems values (1, 2, 'ABAS');

INSERT INTO stems values (1, 3, 'ABB');

INSERT INTO stems values (1, 4, 'ABDI');

INSERT INTO stems values (1, 5, 'ABSID');

INSERT INTO stems values (1, 6, 'ABSOLUT');

INSERT INTO stems values (1, 7, 'ABUZ');

INSERT INTO stems values (1, 8, 'ABUZ');

Experts Manager

The experts manager is a program with grphical user interface that we need in order to declare the experts

that are going to provide arguments (complaints and confirmations) against the primary stemmer’s stems.

For each Expert we declare his/hers urer name and password and also define the ranges of words that the

expert will be able to see and express arguments. As you can see in the next screenshot, “michael” is one of

the experts and he have the ability to express arguments for two ranges. Namely: he can express

arguments for words having identifiers in range 2010-2212 and in range 2501-2702.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

To invoke Experts Manager:

C:\stemSuite\bin> java –jar ExpertsManager.jar

Experts Manager / Modify

The “modify” button from the Experts Manager dialog invokes the next GUI dialog for changing the

password and the ranges of words that an expert can express arguments. The other two buttons (“add”

and “delete”) available in the main Experts Manager dialog have obvious meanings (add a new Expert and

delete an existing Expert, resppectively).

Experts Manager / Manage Groups

The Experts Manager offers also the “Manage Groups” button. This button invokes another dialog where

the user can compose more than one experts in a set of experts named group.

In the following screenshot we can see that the user has selected the group named “first trial” and that this

group has as its members the expers “stamou”, “nnk” and “egali”.

Groups can be used later while building new trial stemmers. The arguments of any expert alone or the set

of arguments of all experts belonging to the same group can be used by the wizard to adapt the stemmer in

order to conform (as much as possible) with the arguments.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

In the following screenshot we can see another group named “fourth trial (nVFAS arguments)”. This group

has as its members the expers “michael”, “fragkou”, “athanasakos”, “skourls” and “nnk2”. This group

(according to the ranges we see in the main Experts Manager screen) has about 2100 words that can have

an equivalent number of arguments.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Stem Editor

The Stem Editor is another case of automation of the building stemmer process. Till now expert had to use

excel (or other spreadsheet software) in order to declare complaints or verifications against/in favor to the

results of the primary stemmer’s stems. The spreadsheet files had ready made 3 columns: Word, Stem and

Translation. The expert had to augment with an Argument column. The argument was (not about a single

word, but) about a set of neighbour words and could be something like:

DS (different stem)

CS (common stem)

DS/CS (Different Stems with subsets of Common Stems)

As small excerpt of such an spreadsheet file follows:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

id word stem translation argument

18 ADRESË ADRE διεύθυνση

CS
DS

19 ADRESËN ADRES της διεύθυσης

20 ADRESOI ADRES διευθύνει

21 ADRESUAR ADRES διευθετημένος CS

Another example of argument expressed in a spreadsheet is the following:

id word stem Translation argument

994 FAKT FAKT
πραγματικότητα
(δεδομένο)

CS

DS

995 FAKTI FAK το λάθος

CS 996 FAKTIN FAKT του λάθος

997 FAKTIT FAK το λάθος

998 FAKTOR FAK Παράγων

CS 999 FAKTORË FAKT οι παράγοντες

1000 FAKTORI FAKT ο παράγων

Next, some programmer (or other expert) had to translate the arguments into sql statements. Now, (in

order to "enhance the work-flow of Building Stemmers") we have build a new tool with graphical user

interface that permit experts to express directly their arguments and the arguments are translated

automatically to sql statements. This tool Let name this tool is named Stem Editor (but also

ExpressArguments).

To invoke Stem Editor:

C:\stemSuite\bin> java –jar StemEditorV4.jar

Of course the user has first to login, using the next dialog:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

After successful login, Stem Editor projects to the expert the words that the expert is authorized to see and

express arguments. The following is a screenshot with the words that expert nnk2 is authorized to handle.

In this screenshot, we can see that the expert has already expressed a complaint argument by defining that

the set of words with ids 994..1000 should have different stems (DS) with 3 subsets of words having

common stem (CS). In the same screenshot we can also see some other CS arguments. For example words

978..981 should have a common stem (CS) with suggested stem value of “EVIDEN”. The numbers (e.g. 404

and 401 in the mentioned examples) are the identifiers of the arguments and are of no interest for

understanding the general idea.

Another example of already expressed DS/CS argument

Next screenshot depicts a DS/CS argument about words 18..21. It has two CS subsets. The first CS subset is

about words with ids 18..20 while the second subset is only about the word with id 21. Number 485 is the

internal identifier of the whole (4 word set) argument.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Stem Editor – step by step definition of a DS/CS argument

In next screenshot we can see that there is no argument about words 2495..2500. We will declare a DS/CS

argument (complaint) about these words.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

First, in the next screenshot, we declare the DS (different stem) argument. To do so, we have to select the

words (with ID ranging 2495 to 2500) and press the button DS. The result is depicted in the following

screenshot.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

In order to declare (define) one of the suggested CS subset, we select the words of the subset and press the

button CS. In the following screenshot we can see the first CS subset having only one item (the word with id

2495)

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

In the next screenshot we can see how we define the 2nd, 3rd and 4th CS subset under (inside) the DS

argument. Each time we select some words inside a DS argument and press the CS button, these (the

selected) words are forming a CS subset. If by mistake you press the CS button twice for the same subset,

you don’t have to worry. The subset get an increased number but this is not a problem because subsets are

separated between each other. In the next screenshot we can see that there are 4 CD subsets inside the DS

and the subsets are numbered 1,3,4 and 5.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Forming (configuring) a trial stemmer

The “trial stemmer builder” (simply “builder”) is a software application with Graphical User Interface. It is

used for configuring alternative trial stemmers. All variations of trial stemmers follow the same function

which is a two step removal of suffixes. The variation of trial stemmers is based in some configuration

parameters but mainly the variation is the result of enabling or disabling a number of suffixes in each (of

the two removal) steps. Because both the “stemmer builder” and the “stemmer evaluator” (discussed

later) are classes of the same project, the invocation command should clarify which class (“trial stemmer

builder” or “trial stemmer evaluator”) we invoke.

Because the project name is StemmerEvaluatorV3, in order to invoke the “trial stemmer builder” we have

to issue the command:

C:\stemSuite\bin> java -classpath StemmerEvaluatorV3.jar Matching.Stemmer2UI

(the package name is Matching and the internal class name of “trial stemmer builder” is Stemmer2UI)

After issuing the above command we will see something similar with the following screenshot:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

In order to configure a trial semmer the user has to:

 enable/disable the “split couples” (SC) parameter,

 define the value of parameter “At least remain letters” (RL),

 define the value of parameter “Minimum word length to apply stemming” (MWL),

 enable/disable the available suffixes for the first and for the second removal step.

The last step can be done by the provided wizard. In order to run the wizard, the user has to select (from

the list above button “Wizard”) an expert or a group of experts and next press the button “Wizard”. The

wizard will automatically enable/disable suffixes in order to make the trial stemmer’s result to be compliant

(as much as possible) with the selected expert or group of experts. After the configuration the user has to

save the results.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Saving the results is an easy process. The user has to follow (in order presented):

 press the button “Config stemmer using the above”,

 type a name for the trial stemmer in the text box,

 press the button “Do dynamic stemming” (it takes some minutes because it updates the db),

 press the button “Save config”.

The first one (“Config stemmer using the above”) put the values from the interface items into internal

program variable. The third one (“Do dynamic stemming”) applies the new trial stemmer in each word and

save the stemmer results in the database. This is the reason that the third step takes some minutes. The

last step (“Save config”) saves the configuration in a text file in order to be used later for automatic code

creation (by code builder). Consider that the name of trial stemmer can have letters, digits and spaces and

should start with letter. This is because this name will become the name of the class (java source code) that

the code builder will produce.

Example: Forming (configuring) a trial stemmer to be compliant with some
expert’s arguments

In the following screenshot, we are configuring the trial stemmer. As you can see the configuration is done

by disabling SC, set RL:3, set MWL:5 and running the wizard to be compliant with “Fragkou’s stems and

arguments”). Next we have to:

 Press “Config Stemmer using the above”,

 Name the stemmer: Fragkou_20190223,

 Press “Do Dynamic Stemming”,

 Press “Save Config”.

The third step enters stems produced by this trial stemmer into table “stems” of the database.

The fourth step creates a file with name “C:\stemmerSuite\Alban1\Fragkou_20190223.txt” (assume that

the selected language is Alban1).

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

The first next picture present the content of table sources after clicking the button “Do Dynamic

Stemming”. The Last row of this table (sources) is about the newly created trial stemmer.

The second next picture has the number of rows in each table in the database. We can see that table

“stems” has 25180 rows and table “words” has 5036 rows. This is because in the depicted language

(Alban1) we have a set of 5036 distinct words and the present example of trial stemmer were the fifth

(actually the primary stemmer and four trial ones, 25180 = 5 x 5036).

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

The configuration of trial stemmer is saved with SHA256 encrypted suffixes

As we alredy have said, the “Save config” step creates a file with the given name inside the folder

“C:\stemmerSuite\Alban1\” (the subfolder – Alban1 – can be the currently selected language). In the last

example we have created the ”Fragkou_20190223.txt” configuration file. The configuration file contains the

3 basic configuration parameters (SC, RL, MWL) and encrypted versions of suffixes flagged with ON|OFF for

each step. The following screenshot contains an excerpt of the configuration file created in the last

example:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Evaluating a trial stemmer

We can form (configure) more than one trial stemmers. Next we have to decide which one is the best one

for production (to be used in some search engine or in some summarizer or in some text classifier and so

on). For this reason we have implemented the Stemmer Evaluator.

To invoke the “stemmer evaluator” we have to issue the command:

C:\stemSuite\bin> java -classpath StemmerEvaluatorV3.jar Matching. EvaluatorUI

(the project name is StemmerEvaluatorV3, the package name is Matching and the internal class name of

“stemmer evaluator” is EvaluatorUI)

Example: evaluating a trial Stemmer

We will describe the evaluation of the stemmer produced previously. We will measure how much

compliant is the stemmer configured to comply with Fragkou’s arguments (Fragkou_20190223) against the

total set of arguments (nnk, Vasilakopoulos, Athanasakos, Fragkou, Skourlas – shortly nVFAS). The next

screenshot is the stemmer evaluator in action:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

The result is 971,31 / 1565.

Next screenshot is another trial stemmer’s evaluation. We are measuring how much compliant is the

stemmer configured to comply with the arguments of a group of experts (configuration file

20190223_GoE_2.txt) against the total set of arguments (nnk, Vasilakopoulos, Athanasakos, Fragkou,

Skourlas – shortly nVFAS). It is obvious that this stemmer (GoE_2) is a better one than the previous.

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Code Builder

Code Builder gets a command line argument (which is the configuration file without the extension .txt) and

produces java code. The configuration file should be inside the selected language subfolder, under the

C:\stemSuite\ basic folder.

As an example we will assume that we prefer the stemmer build according the Fragkou’s arguments. From

a command prompt and having access to the code builder (CodeBuilder.jar) we have to issue the command:

C:\stemSuite\bin> java -jar CodeBuilder.jar Fragkou_20190223

If we assume that the selected language is Alban1, the command reads the configuration file

C:\stemSuite\alban1\Fragkou_20190223.txt and write/create the java source code

C:\stemSuite\alban1\Fragkou_20190223.java.

An excerpt of the produced java code (Fragkou_20190223.java) is presented in the next screenshot:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Compiling the source code

The source code can now be turned to an executable program. To do so open a command prompt, change

directory to the language of interest and issue the compilation command, as following:

C:\> cd stemsuite

C:\stemsuite> cd alban1

C:\stemsuite\alban1> javac –encoding UTF-8 Fragkou_2019023.java

If no mistakes, our folder (for the selected language) will contain the config, the source and the executable

files. For the example we have followed, we are expecting to see:

The Config file: Fragkou_20190223.txt

The Source code file: Fragkou_20190223.java

The Executable file: Fragkou_20190223.class

Next screenshot contains the compilation command and a listing (dir) command which displays all the

expected to see files:

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Running the executable stemmer

The executable stemmer can now be used to stem the words of any document in the language of interest.

If we assume that the input text is “input.txt” and the result (the stems) we want to be saved in a file

named “stemmed.txt“, we have to issue the following command:

C:\stemsuite\alban1> java Fragkou_20190223 input.txt stemmed.txt

Next screenshot is a listing (dir) which contains also the results (stemmed.txt):

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

Two stemmed documents (by different stemmers) and the original (before
stemming)

A common mistake

We have said that the name of trial stemmer can have letters, digits and spaces and should start with

letter. This is because this name will become the name of the class (java source code) that the code builder

will produce. However, if we make the mistake and provide a name for the trial stemmer which is not valid

for a java class, we can fix it. For example, we have seen earlier, that stemmer with id 63 is named

“20190223 GoE 2” (see above the screenshot with table “sources”). The equivalent configuration file is

Stemmer Builder suite Manual – Nikitas N. karanikolas – January 2020

“20190223_GoE_2.txt” (because the “Save Config” button of Stemmer Builder replace spaces with

underscores). In this case, the code builder is invoked with the next command:

C:\stemSuite\bin> java -jar CodeBuilder.jar 20190223_GoE_2.txt

And the result (the product of code builder) is the java source file 20190223_GoE_2.java

If you try to compile this file you will get an error message. This is because the file 20190223_GoE_2.java

contains a class named 20190223_GoE_2 which is an invalid class name. The solution is to rename the class

and the file to something acceptable. For example rename the file to “GoE2.java”, edit the file and change

public class 20190223_GoE_2 {

to

public class GoE2 {

Belgrade, January, 2020

Nikitas N. Karanikolas

