A
NI

Database Schema Design for a Non-
Relational Information System

Silvana Greca A
Department of Informatics
Faculty of Natural Sciences
University of Tirana

Agenda

NoSQL & MongoDB background
Data modeling approach
Data dictionary & visual schema

Retrieval & maintenance requirements

Implementation examples
Conclusion

What is NoSQL

N

= Stands for Not Only SQL??
= Class of non-relational data storage systems

= Usually do not require a fixed table schema nor do they use the
concept of joins

= Distributed data storage systems

= Many NoSQL systems relax one or more ACID properties,
particularly consistency, in order to achieve higher scalability and
availability.
However, modern systems such as MongoDB support ACID
transactions with certain trade-offs.

eNon-relational database paradigm

eDesigned for scalability and flexibility

oOften trades strict consistency for availability
eSupports semi-structured and unstructured data

N

NoSQL: Categories

* Key-value

b

* Graph database

] I‘ o
* Document-oriented @ mongoDB |p ‘el
CouchDB

* Column family TE 119):

Cassandra HBASE

CAP Theorem

N

= Three properties of a system
o Consistency (all copies have same value)

o Availability (system can run even if parts have
failed)

a All nodes can still accept reads and writes

o Partition Tolerance (Even if part is down, others
can take over)

s CAP “Theorem”:

= You can have at most two of these three
properties for any system

= Pick two Il

CAP Theorem

N

Data Models
Relational (Comparison)
Key-value
Column-oriented/ Tabular
Document oriented

CA
RDBMSs Aster Data
(MySQL, Greenplum
Postgres, Vertica
etc)

onsistency

Avallablllty

Each client can always read and write

AP
Dynamo Cassandra
Voldemort SimpleDB
Tokyo Cabinet CouchDB
KAI Riak

Partltion

CcP Tolerance
All clients always_ BigTable MongoDB Berkeley DB The system works well
have the same view Hypertable Terrastore MemcacheDE despite physical network
of the data HBase Scalaris Redis partitions

The BASE Properties

= The CAP theorem proves that it is impossible to guarantee
strict Consistency and Availability while being able to
tolerate network partitions

» This resulted in databases with relaxed ACID guarantees

= In particular, such databases apply the BASE properties:
- Basically Available: the system guarantees Availability
. Soft-State: the state of the system may change over time

- Eventual Consistency: the system will eventually
become consistent

What does NoSQL Not Provide

® No built-in join

Historically, NoSQL systems did not
support ACID transactions.

Modern NoSQL databases, such as
MongoDB, now provide ACID transaction
support while prioritizing scalability and
performance.

4 No SQL

What is MongoDB?

L

Defination: MongoDB is an open source, document-
oriented database designed with both scalability and
developer agility in mind.

® Instead of storing your data in tables and rows as you
would with a relational database, in MongoDB you store
JSON-like documents with dynamic schemas.

4% MongoDB is a schema-flexible document-
oriented database.

It does not enforce a fixed schema at the storage
level, but schemas can be defined and enforced at the
application or database validation level.

Document-Oriented DB

= Unit object is a document instead of a row (tuple) in
relational DBs

N

MongoDB: Goal

Goal: bridge the gap between key-value stores
(which are fast and scalable) and relational
databases (which have rich functionality).

Support complex, semi-structured data

Optimize data retrieval

* memcached

* key [value stores * MongoDB

Scalability & Performance

10

mIs It Fast?

3500 +
3000 -
2500
2000 4
1500 - 4

1000

4500

MongoDB provides high performance for semi-
structured and hierarchical data by storing related data
together in documents, reducing the need for joins and
enabling efficient data retrieval.

Inserts / sec

M Queries / sec

~
.
#
-~
-
J.—

T 1
MongoDB saL 1 1

Integration with Others

ﬂ‘/

cil-

—_— |

Javascript

ﬂ python
NET (C# F#, PowerShell, etc)
Node.js

o a |

EEE. !l!ii:illi! =’ HPASKELL
Python Java

Ruby
Scala http:// www.mongodb.org/display/DOCS/Drivers

12

Data Modeling

BSON format (binary JSON)

Developers can easily map to modern object-

oriented languages without a complicated
ORM layer.

lightweight, traversable, efficient
Collections & documents

Embedded documents

Arrays for one-to-many relationships
Aggregate-oriented design

13

Data Dictionary — Neurological Patient

5 Patient Document
o patientld (String): Unique identifier of the patient
o demographics (Object): Personal and administrative
patient data
o riskFactors (Array): Known medical risk factors
o visits (Array): Clinical encounters over time
o createdAt, updatedAt (Date): Metadata for document
lifecycle
o Visit Subdocument
o visitld (String): Unique visit identifier
o date (Date): Visit date
o complaints (Array): Reported symptoms
o neurologicAssessment (Object): Neurological
examination results
o diagnoses (Array): Diagnosed neurological conditions

Database Visual Schema

N

eSingle Patient document as the main aggregate
eNested structures represent real-world hierarchy
eOne-to-many relationships modeled through arrays
*No foreign keys or join tables

eData stored together based on access patterns

Patient

— demographics

— riskFactors [|

— Visits []

— neurologicAssessment
— diagnoses []

Terms Mapping: DB vs. MongoDB

RDBMS MongoDB
Tables =====-- B el e et Collections
Rows —----+ ey e i o e e Documents

Columns -=-t+-t-t----- —=t=1-f---- Fields

N

One

JSQN..

document

"firgstName": "John",

"lagtName": "Smith",
"isAlive": true,
"age": 25,

"height ecm": 167.6,
"address": {
"streetiAddress": "21 2Znd Street”,
"eity": "New York",
"state": "NY",
"postalCode": "10021-3100"

b
"phoneNumbers”: [
{
Irt?pelr . ¥ hﬂme 1]]
"“number”: "212 555-1234"
}s
{
"type": "office",
"“number”: "646 555-4567"
}

1+
"gchildren": [1.

"spouse": null

Field Value

® Field Value

Scalar (Int, Boolean,
String, Date, ...)

Document (Embedding or
Nesting)

Array of JSON objects

17

N

MongoDB Model

One document (e.q., one tuple in RDBMS)

name: "sue”,

age: 26,

status: "A",
groups: ["news”, "sports”"] <— field: value

<+— field; value
<+— field: value
<+— field; value

One Collection (e.g., one Ta

{

na
ag
st
gn

{

na
ag name: "al",
st age: 18,
gr status: "D",
groups: ["politics”, "news"]
Collection

 The field names cannot
start with the $ character

* The field names cannot
contain the . character

hle in RDBMS)

* Max size of single
document 16MB

18

Ve
~

}

—— WS -
- - — .

- ~
_id: Objectld(7df78ad8902c) ’\

—y -—
~—————_—

title: WMongoDB Overview”,

descrnption: MongoDB is no sgl database”,
by: ‘tutonals point’,

urd: 'httpZfwaww tutoralspoint.com’,

tags: ['mongodb’, 'database’, NoSCALT,
likes: 100,

comments: [

{

user:'userl’,

message: My first comment’,

dateCreated: new Date(2011,1,20,2,15).

like: O
)

{

user:'user?’,

message: My second comments’,

dateCreated: new Date(2011,1,25,7.45),

like: 5
¥
]

Example Document

N
id

MongoDB

Is a special column in each

document

Unique within each collection

_id

€=> Primary Key in RDBMS

The default Objectld value is 12
bytes, but _id can be of any data

type.

Or:

15t 4 bytes = timestamp
Next 3 bytes = machine id
Next 2 bytes =» Process id
Last 3 bytes = incremensal

vvaliiac

Design Rationale — Key
Modeling Decisions

\V

ePatient-centric document design

eUse of embedded documents for visits and diagnoses
eAvoidance of joins to optimize read performance
eAcceptance of controlled data redundancy

eSchema flexibility to support evolving clinical data
eQuery-driven schema design

Data Modeling Strategies in

N

MongoDB

eEmbedded model
eReferenced model

eHybrid model

eChoice depends on:
edata structure
eaccess patterns
escalability needs

Comparison of MongoDB Data

N

Aspect

Data locality

Read performance
Write scalability
Query complexity

Document growth risk

Modeling Approaches

Embedded Referenced
High Low
Excellent = Moderate
Limited High

Low High

Yes No

Hybrid
Medium
Good
High
Medium
Controlled

N

Chosen Modeling Strategy

" #Embedded model selected
Patient-centric access pattern
Complete medical history retrieval

Atomic updates at document level

Hybrid model considered for large-scale
scenarios

Defined Schema

N

L

MongoDB does not require a predefined schema at

the storage level.
Schema constraints can be enforced using schema

validation or at the application layer.

24

Data Model Comparison
Relational DB vs. NoSQL

25

Dat= Mndal (‘nmn:\ncnn Ralatinnal DR ywve NInQNI

This is ha;d.q..

« Complex relationships
» Dynamic environment

".;.:3'— PR w&:"‘" =_.-_'_ '...-. ;.:-._.-

N

Relational Data Model

Relational Record

- Two-dimensional storage .
- Field contains a single value

 Query on any field —

» Very structured schema

- Poor data locality requires
many tables, joins,and indexes.

27

N

Document Data Model

MongoDB Document

- N-dimensional storage

.
- Field can contain many values

and embedded values —

« Query on any field & level

- Flexible schema

- Optimal data locality requires

'

fewer indexes and provides
better performance

'

28

MongoDB does not support joins Iin the
traditional relational sense.
Data relationships are modeled using embedded

documents, references, or application-level logic.

Disk seeks and data locality

29

Data Retrieval Requirements

#® Retrieve complete patient history
#®Filter patients by diagnosis

Analyze neurological assessments
#Support aggregation queries

N

Data Maintenance Requirements

Insert new patient documents

Append new visits to existing patients

Update nested clinical data atomically

Preserve historical medical records

Support schema evolution without migrations

Maintain consistency at document level

MongoDB CRUD Operations

Create
m db.collection.insertOne(<document>)
m db.collection. insertMany(<document>)
m db.createcollection()

Read

m db.collection.find(<query>, <projection>)
m db.collection.findOne(<query>, <projection>)
Update
m db.collection.updateOne(<query>, <update>, <options>)
m db.collection.updateMany()
m db.collection.replaceOne()
Delete

= db.collection.deleteOne()
= db.collection.deleteMany()

N

32

'CRUD Examples

\+/

db.users. insertOne(4+——— collection

name: "sue" +—— field: value
ge: 26 4+—— field: value document
tatus: "pending” 4+———— field: value

=)
=

> db.student.find().pretty()

> db.student.updateOne({name: "Sumit"}, {$set:{age: 24 }})
{ "acknowledged" : true, "matchedCount" : 1, "modifiedCount"
> db.student.find().pretty()

{
" id" : ObjectId("5e540cdc92e6dfal3fc4s8ddae"),
"name" : "Sumit",
"age" : 24,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499
}

> db.student.deleteOne({name: "Sumit"})
{ "acknowledged" : true, "deletedCount" : 1 }

" id" : ObjectId("5e540cdc92e6dfa3fc48ddae"), > db.student.find().pretty()

{
"name" : "Sumit",
"age" : 20,
"branch" ¢ “CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499

}

{
"_id" : ObjectId("5e540d3192e6dfa3fc48ddaf"),
"name" : "Sumit",
"age" : 20,
"branch" : "CSE",
"course" : "C++ STL",
"mode" : "online",
"paid" : true,
"amount" : 1499,
"year" : 2020

}

33

Multi-Document Insertion
(Use of Arrays)

/_
U
var mydocuments =
[

{
item: "RBCZ",
details: { model: "1403", manufacturer: "Ml Corporation®™ },
stock: [{ size: "M", qty: 50 }],
category: "clothing®

be

{
item: "MNOZ",
details: { model: "1403", manufacturer: "ABC Company™ |,
stock: [{ size: "3", gty: & }, { =ize: "M", gty: 5 }, { size: "L", gty: 1 }],
category: "clothing®

ke

{
item: "IJEZ",
details: { model: "1402", manufacturer: "ML Corporation® §,
stock: [{ size: "5", gty: & }, { size: "L", gtv: 1 }],
category: "housewars"

I

1
db. inventory.insert { mydocuments) ; A” the documents are

inserted at once

34

Replace a document

N

Query Condition

db.employee.replaceOne/
1 name: "Sonu" 1},

{ name: "Sonu", age: 25, branch: "CSE", department: "Designing" }

);

New
dac

we are replacing a document of an employee whose
name is Sonu.

35

Update

"> db.employee. updateManv[{hranch "CSE"}, {%$set: {salary: 35800}})

{ "acknowledged" : true, "matchedCount" : 2, “"modifiedCount" : 2 }
> db.employee.find().pretty()
{

" id" : ObjectId("G5e49177592eb4dfal3fc4B8dd73"),

"name" : "“Sonu",

"age" : 26,

"branch" : "CSE",

"department" : "HR",
"salary" : 35886

" id" : ObjectId("5e49813692eb6dfa3fc48dd74"),
"name" : "Rohit",

we are updating the salary of those employees
whose branch is CSE

36

N

Query Language in MongoDB: Find() Operator

Means ascending

Collection { Query Criteria \\ Modifier
db.users.find({ age: { $gt: 18 } }).sort({age: 1 })

{ age: 18, ...}
{ age: 28, ...} { age: 28, ...} { age: 21, ...}
{ age: 21, ...} { age: 21, ...} { age: 28, ...}
{ age: 38, ...} | =——————— |{ age: 38, ...} | e |{ age: 31, ...}
Cage: 18, 3 Query Criteria oge: 3B .3 Modifier ager 3B .
{ age: 38, ...} { age: 31, ...} { age: 38, ...}
{ age: 31, ...} Results
users

37

Find() + Projection

N

db.users.find(<«— collection
{ age: { $gt: 18 } }, <+—— query criteria
{ name: 1, address: 1 } <«—— projection
).1limit(5) <«—— cursor modifier

Means inclusion +
_id is always automatically included

Equivalent to in SQL:

SELECT _id, name, address «—— projection

FROM users <«—— table
WHERE age > 18 <—— select criteria
LIMIT 5 <«—— cursor modifier

38

N

Collection

db.users.find({ age: 18 }, { name: 1, _id: @ })

Find(): Exclude Fields

Means exclusion

Query Criteria Projection /

taee: 18 ...3) Means equality
{ age: 28, ...}
{ age: 21, ...}
{ age: 18, ...} { name: "al” }

{ age: 38, ...} e =

Query Criteria |{ age: 18, ...} Projection { name: "bob™ }
{ age: 18, ...}

Results
{ age: 38, ...}
{ age: 31, ...}
users

Cannot mix “inclusion & exclusion” in the same operator except for _id

39

Find() More Examples

Report all documents in the “inventory” collection

N

db.i tory.find i
memen @) Equivalent to in SQL: irecl)engtinventor&/'

db.inventory.find({})

Report all documents in the “inventory” collection Where type = ‘food’ or ‘snacks’

db.inventory.find(

£ dime [. ' . elect *
'snack{s It}lp}e.}{ $in: ['food', Equivalent to in Sd O IFVEntory
) Where type in
(‘food’, ‘snacks’

40

Find(): AND & OR

N

WL
(W g]
——
—_—

db.inventory.find({ type: 'food', price: { $lt: 9.

OR Semantics

db. inventory.find/(
{
Sor: [{ gty: { $gt: 100 } }, { price: { $1lt: 9.85 } } 1]
1

AND + OR Semantics

db-inwﬂtﬂr}*-fiﬂdf Type = ‘food’ and (qty > 100 or price < 9.95)

type: '"food',
Sor: [{ gty: { $gt: 100 } }, { price: { $1lt: 9.95 } } 1]
}

N

{

}

"firgtName": "John",
"lagtMName": "Smith",
"isalive": true,
"age": 25,

"height em": 167.6,

"address": {
"streetiAddress": "21 2Znd Street”,
"eity": "New York",
"state": "NY",
"postalCode": "10021-3100"

b
"phoneNumbers”: [
{
|rtypelr . "hﬂme 1]]
"number”: "212 555-1234"
}s
{
"type": "office",
“number”: "646 555-4567"
}

1+
"ghildren": [1.
"spouse": null

Querying Complex Types

Documents can be
complex, E.qg.,

(Arrays, embedded
documents, any nesting of
these, many levels)

Queries get complex too
1]

42

N

Array Manipulation- Exact Match

L

{ _id: 5, type: "food", item: "aaa", ratings: [5, &, 9] 1}
{ _id: &, type: "food", item: "bbb", ratings: [5, 9] }
{ _id: 7, type: "food", item: "ccc", ratings: [9, 5 8] 1}
db.inventory.find{ { ratings: [5, &, 2] } }
The operation returns the following document:
{ "_id" : 5, "type" "food", "item" : "aaa", "ratings" [5, 8,

43

Array Manipulation - Search By Element

N

{ _id: 5, type: "food", item: "aaa", ratings: [5, &, 9] 1}

{ _id: &, type: "food", item: "bbb", ratings: [5, 9] }

{ _id: 7, type: "food", item: "ccc", ratings: [9, 5 8] 1}

db. inventory.find{ { ratings: 5 })

The operation returns the following documents:
" id" 5, "type" : "focd", "item" : "aaa", "ratings" [5, 8, 9]
" id" 6, "type" : "food", "item"™ : "bbb", "ratings" [5, 9] }

{ "_igd" 1, "type" : "foed", "item" : "ccc", "ratings" [9, 5, B]

Notice: if a document has “ratings” as an Integer field =
5, it will be returned

44

Array Manipulation - Search By Position

N

L
{ _id: 5, type: "food", item: "aaa", ratings: [5, &, 9] 1}
{ _id: &, type: "food", item: "bbb", ratings: [5, 9] }
{ _id: 7, type: "food", item: "ccc", ratings: [9, 5 8] 1}
db. inventory.find({ { "ratings.0': 3 } }
The operation returns the following documents:
{ "_id" : 5, "type" : "food", "item" : "aaa", "ratings" : [5, 8, 9] }
"_id" : &, "type" : "food", "item" : "bbb", "ratings"™ : [5, 92] }

Notice: if a document has “ratings” as an Integer field =
5, it will not be returned

45

Embedded Object Matching
(Exact doc Matching)

¢
{

name: "Joe",

address: {
city: "San Francisco",
state: "CA" },
likes: ['scuba’, 'math’, 'literature']
}
db.persons.find({ "address" : { state: "CA" }}) //don’t match
db.persons.find({ "address" : {city: "San Francisco", state: "CA" }}) // match Exa Ct_
| | | match
db.persons.find({ "address" : {state: "CA", city: "San Francisco"}}) //don’t match .
(entire
object)

46

Embedded Object Matching
(Field Matching)

{
name: "Joe",
address: {
city: "San Francisco",
state: "CA" },
likes: ['scuba’, 'math’, 'literature’]
}

db.persons.find({“address.state” : "CA"}). Using dot notation

47

Collection Modeling

N

#Modeling multiple collections that
reference each other

#In Relational DBs = FK-PK Relationships

#In MongoDB, two options
= Referencing
= Embedding

48

FK-PK in Relational DBs

p
N
e Create “Students” relation e Create “Courses” relation
CREATE TABLE Students CREATE TABLE Courses
(sid CHAR(20), (cid Varchar2(20),
name CHAR(20), name varchar2(50),
login CHAR(10), maxCredits integer,
age INTEGER, graduateFlag char(1));
a REAL); ,
14) | Foreign key
Foreign key
e Create “Enrollec” relation
- CREATE TABLE Enrolled
‘EaCh tuple In (Sid CHAR(20),
“Enrolled” cid Varchar2(20),
- m enrollDate date,
reference a specific orade CHAR(2));

student and a
specific course 49

A

4500 e
2000 ‘/
a0+
3000 1 Y
2500 17 ! Inserts / sec
v H Queries / sec
2000 7 -
f 1500 +
% wl
00 17

#® Referencing between two collections
= Use Id of one and put in the other
= Very similar to FK-PK in Relational DBs

s Does not come with enforcement
mechanism

® Embedding between two collections

s Put the document from one collection inside
the other one

Hybrid Model

50

N

Referencing

contact document

{
NoO Enf0 _id: <ObjectId2>,
/user‘_id: <Objectldl>,
phone: "123-456-7890",
email: "xyz@example.com”

user document
{ }
_id: <:L')I:-ject1d1>,/
username: "123xyz" access document

} {

\

_id: <Objectld3>,
user_id: <0Objectldl>,

ay level: 5,
l ed W roup: "dev"
normaliZ

« Have three collections in the DB: “User”, “Contact”, "Access”
« Link them by _id (or any other field(s))

Embedding

N

{
_id: <ObjectIdl>,

username: "123xyz",
contact: {

3
access: { . .
evel: 5,
rma’,-zed Way } group: "dev”
pe-NO }

phone: "123-456-7890",
email: "xyz@example.com” ,

N

)
)

Have one collection in DB: “User”

Embedded sub-
document

Embedded sub-
document

The others are embedded inside each user’s document

N

Examples (1)

“Patron” & “"Addresses”
{

[

-
cing
_ . patron_id: "‘joe", ’(‘3’23’13"
_id: "joe", street: "123 Fake Street",
name: "Joe Bookreader® city: "Faketon",

State: "MA".

Zip: "12345"

If it is 1-1 relationship

If usually read the address with the name

If address document usually does not expand

If most of these
hold

= better use
Embedding

53

Examples (2)

N

“Patron” & “"Addresses”

{

name: "Joe Bookreader®,
address: |
strest: "123 Fake Street®,
city: "Faketon",
state: "MA",
Zip: "123435"

« When you read, you get the entire document at once

« In Referencing = Need to issue multiple queries

_id: "djoe", Embedding

54

Examples (3)

What if a "Patron” can have many “Addresses”
[|
[[

N

. . pat) .
_].d: I'!]IJE I'!J StI —a—[—-— - = [T]
] T - - S
name: "Joe Bookreader® cit

patron_id: "joe",

St3 = s B
| = street: "123 Fake Street",
zi| city: "Faketon®,
} 1 state: "MA",

: zip: "12345" ReferTnC’ng

b

* Do you read them together = Go for Embedding

« Are addresses dynamic (e.g., add new ones frequently)

=» Go for Referencing

55

N

Examples (4)

What if a "Patron” can have many “Addresses”

{
_id: "joe®,
name:
addresses: |

(

"Joe Bookreader®,

street: "123 Fake
city: "Faketon",
sState: "MAR",

Zip: "12345"

street: "1 Some
city: "Boston®,
state: "MA",
Zip: "12345"

Street",

Other Street®,

Em pedding

Use array of
addresses

56

N

Examples (5)

If addresses are added frequently ...

{

id:
name:

L] I':l: L] '

"Joe Bookreader®,

addresses: |

{
street: "123 Fake
clty: "Faketon®,
sState: "MAR",
zi-l:l: |r'|:_\l'.__.‘_'_|r

street: "1 Some Other
city: "Boston®,
State: "MA",

zip: ™12345"

o+ oot ®
..'.l_.l_l_l_ ¥

Stroect™
fou ==l

This array will
expand frequently

Size of “"Patron”
document increases
frequently

May trigger re-
locating the
document each time
(Bad)

57

Example

E ¥ MongeDB Compass - lecalhost:27017/Shell db_patients countDocuments ()

Connections Edit View Help

Atticad

+

> mongosh: localhost:27017
Compass O

>_MONGOSH
{} ™My Querias
db.patients.insertMany([
{

patientId: "P2801",

i Data Modeling

CONNECTIONS (1 X+
) demographics: {
Y firstName: "John",
lastName: "Doe",
»] localhest:27017 date0fBirth: new Date("1980-85-12"),
v 8 Attica gender: "M",
] insurancelo: "INS-2081"
B potients
1,
» 8 admin
riskFactors: [
> € bookstore { name: "Smoking", status: "Active" },
e i { name: "Hypertension", status: "Controlled" }
» 2 config 1,
r 2 |ocal visits: [
{
r 8 mydb

visitId: "V2ee1-1",
date: new Date("2024-82-10"),
complaints: ["Headache", "Dizziness"],

neurologicAssessment: {

sefjzures: false,

ges: { eye: 4, verbal: 5, motor: 6 }

s

-

M patients 2 Attica +

Compass e
{} My Queries localhost:27017 » Attica » patients | >_. Open MongoDE shell) +
¢ Data Modeling Documents 5 Aggregations Schema Indexes 1 validation
CONNECTIONS (1) X o+ e R J—
[R Type a query: { field: 'walue' } or Generate query + | Explain | Reset | s/ | Options »
Search connections ‘ A i -
CYUITTTED (¢ EXPORTDATA - | [~ UPDATE | [& DELETE | (25 v]1-50f5 & B3l = KRN

» & localhest:27017
L4 Attica
§ _id: ObjectId('69409fe423dbob5a7Ta9581a")
Il patients patientId : "P20@1"
» demographics : Object

* & admin » riskFactors : Array (2)
5 g bookstore * visits : Array (1)
* B: Object
» 2 bookstorel visitId : "V2@ei-i"
date : 2024-02-19T00:00:00.000+00:08
L § config * complaints : Array (2)
» & local @: "Headache"
1: "Dizziness"
» 2 mydb * neurologicAssessment : Object

* diagnoses : Array (1)
createdAt : 2025-12-15T23:55:16.319+80:0@
updatedAt : 2025-12-15T23:55:16.319+80:08

_id: ObjectId('69469fe423dbo9b5a7Ta9581b")
patientId : "P2e82"

» demographics : Object

» riskFactors : Array (1)

» visits : Array (1)
createdAt : 2025-12-15T23:55:16.319+80:08

Queries
@ /1 All stroke-related patients

db.patients.find({ "visits.diagnoses.code": { $in: ["I63", "164"] }
1)

[/ Patients with seizures
db.patients.find({ "visits.neurologicAssessment.seizures": true })

[/ Patient timeline

db.patients.find(

#® { patientld: "P2005" },

{ demographics: 1, visits: 1 }
)

[/ Patients with Smoking risk factor
db.patients.find({ "riskFactors.name": "Smoking" })

Schema Validation
¢JSON Schema validation
*Required fields enforcement
eImproves data quality
ePrevents malformed documents

>_MONGOSH

db. runCommand ({
collMod: "patients"”,
validator: {

$jsonSchema: {

bsonType: "object",
required: ["patientId", "demographics", "wvisits", "createdAt"™, "updatedAt"],

additionalProperties: true,

properties: {

patientId: { bsonType: "string", description: "Unique patient ddentifier" },

demographics: {
bsonType: "object",
required: ["firstName", "lastName", "dateOfBirth", "gender", "insuranceNo"],
properties: {
firstName: { bsonType: "string" 1},
lastName: { bsonType: "string" },
dateOfBirth: { bsonType: "date" },
gender: { enum: ["M"™, "F", "Q"] 1},

insuranceMo: { bsonType: "string" }

N

index

db.patients.createlndex({ patientld: 1 }, { unique: true })

db.patients.createIndex({ "demographics.insuranceNo": 1 }, {
unique: true })

db.patients.createlndex({ "visits.diagnoses.code": 1 })
db.patients.createIndex({ "riskFactors.name": 1 })

Test that validation works

N

"#This insert has gender: "X" (invalid) —
should be rejected:

db.patients.insertOne({
patientId: "PS999",

demographics: {

firstName: "Test",
lastName: "Invalid",
date0OfBirth: new Date("19%8-81-01"),
gender: "X",
insuranceNo: "INS-9993"
},
visits: [],

createdAt: new Date(),

updatedAt: new Date()

Document fadiled valdidatdieon

¥ MongoDE Compass

Connections Edit View Help

Compass

D My GQueries

¢z Data Modeling

CONMNECTIONS (1)

Search connections

» [localhest:27017

-

-

-

-

-

-

-

8 Attica

B rotients

£ odmin
2 bookstore
2 bookstorel
2 config

2 local

2 mydb

e

B paotients 2 Attica «h Patients +
diagrams » Patients
2 m .
i patients
4 _did objectld
createdAt date
demographics i1
dateOfBirth date
firsthame string
gender string
insuranceNo string
lastHame string
patientId string
riskFactors []
name string
status string
updatedAt date
wisits []
complaints
date date
diagnoses []
certainty string
code string
description string
diagnosisDate date
neurclogicAss.. {}
Zcs i1H
eye int
motor int
verbal int
T seizures bool
visitId string

Crud operation

N

L

* Insert new patient
db.patients.insertOne({
patientld: "P3001",
demographics: {
firstName: "Erion",
lastName: "Basha",
dateOfBirth: new Date("1990-04-18"),

gender: "M",

insuranceNo: "INS-3001"
b
riskFactors: [{ nhame: "Smoking", status: "Active" }],
visits: [],

createdAt: new Date(),
updatedAt: new Date() })

Add a new visit for an existing patient
db.patients.updateOne(

& { patientld: "P2001" },

{
$push: {
visits: {
visitld: "v2001-2",
date: new Date("2024-10-01"),
complaints: ["Memory loss"],
neurologicAssessment: {
seizures: false,
gcs: { eye: 4, verbal: 5, motor: 6 }
b
diagnoses: []
)
I
$set: { updatedAt: new Date() }
)

N

db.patients.find()

db.patients.findOne({ patientld: "P2001" })
db.patients.find({ "visits.diagnoses.code": { $in: ["I63", "164"] } },
{ patientld: 1, demographics: 1 })

db.patients.find({}, { _id: O, patientld: 1, demographics: 1 })

db.patients.updateOne({ patientld: "P2002" },

{ $set: { "demographics.insuranceNo": "INS-UPDATED-2002" } })

N

Add a new diagnosis to an
existing visit

db.patients.updateOne(
{ patientId: "P2001", "visits.visitld": "V2001-1" },

{

$push: {
"visits.$.diagnoses": {

code: "G45",

description: "Transient Ischemic Attack”,
certainty: "suspected"”,

diagnosisDate: new Date()

y
b
$set: { updatedAt: new Date() }
y
)

Delete the patient

#db.patients.deleteOne({ patientld:
"P3001" })

Delete a diagnosis from a visit
(nested delete)

db.patients.updateOne(
{ patientId: "P2001",
"visits.visitld": "V2001-1" },

{
$pull: {
"visits.$.diagnoses": { code:
"G45" }
y
)
)

N

MongoDB Aggregation
Commands

Aggregation in MongoDB is used to:
= analyze data
= transform documents
s compute summary statistics
= generate derived results

Unlike find(), aggregation:
= processes data through a pipeline
= applies transformations stage by stage
= returns computed and reshaped results

N

Filtering (SQL WHERE)

db.patients.aggregate([
{ $match: { "visits.diagnoses.code": "163" } }

1)

Aggregation and Grouping

(SQL GROUP BY)

{
$group: {
_id: "$visits.diagnoses.code”,
totalOccurrences: { $sum: 1 }

’
y

N

SQL
SELECT
WHERE
GROUP BY

HAVING
ORDER BY
COUNT()

Aggregation vs SQL

MongoDB Aggregation
Sproject

$match

Sgroup
Smatch (after Sgroup)
$sort

Scount

Conclusion

N

A complete non relational IS design was
presented

Supports both retrieval and maintenance

This presentation demonstrated the design of
a non-relational Information System based on
MongoDB, highlighting how document-
oriented databases effectively support
complex, hierarchical data structures and
query-driven access patterns in modern
information systems.

Questions

#Thank you for your attention

#Questions?

	Slide 1: Database Schema Design for a Non-Relational Information System
	Slide 2: Agenda
	Slide 3: What is NoSQL
	Slide 4: NoSQL: Categories
	Slide 5: CAP Theorem
	Slide 6: CAP Theorem
	Slide 7: The BASE Properties
	Slide 8: What does NoSQL Not Provide
	Slide 9: What is MongoDB?
	Slide 10: MongoDB: Goal
	Slide 11: Is It Fast?
	Slide 12: Integration with Others
	Slide 13: Data Modeling
	Slide 14: Data Dictionary – Neurological Patient
	Slide 15: Database Visual Schema
	Slide 16: Terms Mapping: DB vs. MongoDB
	Slide 17: JSON
	Slide 18: MongoDB Model
	Slide 19: Example Document in MongoDB
	Slide 20: Design Rationale – Key Modeling Decisions
	Slide 21: Data Modeling Strategies in MongoDB
	Slide 22: Comparison of MongoDB Data Modeling Approaches
	Slide 23: Chosen Modeling Strategy
	Slide 24: Defined Schema
	Slide 25: Data Model Comparison Relational DB vs. NoSQL
	Slide 26: Data Model Comparison Relational DB vs. NoSQL
	Slide 27: Relational Data Model
	Slide 28: Document Data Model
	Slide 29: MongoDB does not support joins in the traditional relational sense. Data relationships are modeled using embedded documents, references, or application-level logic.
	Slide 30: Data Retrieval Requirements
	Slide 31: Data Maintenance Requirements
	Slide 32: MongoDB CRUD Operations
	Slide 33: CRUD Examples
	Slide 34: Multi-Document Insertion (Use of Arrays)
	Slide 35: Replace a document
	Slide 36: Update
	Slide 37: Query Language in MongoDB: Find() Operator
	Slide 38: Find() + Projection
	Slide 39: Find(): Exclude Fields
	Slide 40: Find() More Examples
	Slide 41: Find(): AND & OR
	Slide 42: Querying Complex Types
	Slide 43: Array Manipulation- Exact Match
	Slide 44: Array Manipulation - Search By Element
	Slide 45: Array Manipulation - Search By Position
	Slide 46: Embedded Object Matching (Exact doc Matching)
	Slide 47: Embedded Object Matching (Field Matching)
	Slide 48: Collection Modeling
	Slide 49: FK-PK in Relational DBs
	Slide 50: In MongoDB
	Slide 51: Referencing
	Slide 52: Embedding
	Slide 53: Examples (1)
	Slide 54: Examples (2)
	Slide 55: Examples (3)
	Slide 56: Examples (4)
	Slide 57: Examples (5)
	Slide 58: Example
	Slide 59
	Slide 60: Queries
	Slide 61: Schema Validation
	Slide 62: index
	Slide 63: Test that validation works
	Slide 64
	Slide 65: Crud operation
	Slide 66: Add a new visit for an existing patient
	Slide 67
	Slide 68: Add a new diagnosis to an existing visit
	Slide 69: Delete the patient
	Slide 70: Delete a diagnosis from a visit (nested delete)
	Slide 71: MongoDB Aggregation Commands
	Slide 72: Filtering (SQL WHERE)
	Slide 73: Aggregation and Grouping (SQL GROUP BY)
	Slide 74: Aggregation vs SQL
	Slide 75: Conclusion
	Slide 76: Questions

