
Database Schema Design for a Non-
Relational Information System

Silvana Greca

Department of Informatics

Faculty of Natural Sciences

University of Tirana

Agenda

NoSQL & MongoDB background

Data modeling approach

Data dictionary & visual schema

Retrieval & maintenance requirements

Implementation examples

Conclusion

What is NoSQL

3

◼ Stands for Not Only SQL??

◼ Class of non-relational data storage systems

◼ Usually do not require a fixed table schema nor do they use the
concept of joins

◼ Distributed data storage systems

◼ Many NoSQL systems relax one or more ACID properties,

particularly consistency, in order to achieve higher scalability and

availability.

However, modern systems such as MongoDB support ACID

transactions with certain trade-offs.

•Non-relational database paradigm
•Designed for scalability and flexibility
•Often trades strict consistency for availability
•Supports semi-structured and unstructured data

NoSQL: Categories

4

CAP Theorem

◼ Three properties of a system
❑ Consistency (all copies have same value)
❑ Availability (system can run even if parts have

failed)
❑ All nodes can still accept reads and writes

❑ Partition Tolerance (Even if part is down, others
can take over)

◼ CAP “Theorem”:
◼ You can have at most two of these three

properties for any system
◼ Pick two !!!

5

CAP Theorem

6

The BASE Properties
▪ The CAP theorem proves that it is impossible to guarantee

strict Consistency and Availability while being able to
tolerate network partitions

▪ This resulted in databases with relaxed ACID guarantees

▪ In particular, such databases apply the BASE properties:

▪ Basically Available: the system guarantees Availability

▪ Soft-State: the state of the system may change over time

▪ Eventual Consistency: the system will eventually
become consistent

What does NoSQL Not Provide

No built-in join

Historically, NoSQL systems did not
support ACID transactions.

Modern NoSQL databases, such as
MongoDB, now provide ACID transaction
support while prioritizing scalability and
performance.

No SQL

8

What is MongoDB?
Defination: MongoDB is an open source, document-
oriented database designed with both scalability and
developer agility in mind.

Instead of storing your data in tables and rows as you
would with a relational database, in MongoDB you store
JSON-like documents with dynamic schemas.

MongoDB is a schema-flexible document-
oriented database.

It does not enforce a fixed schema at the storage
level, but schemas can be defined and enforced at the
application or database validation level.

Document-Oriented DB

◼ Unit object is a document instead of a row (tuple) in
relational DBs

9

MongoDB: Goal

Goal: bridge the gap between key-value stores
(which are fast and scalable) and relational
databases (which have rich functionality).

Support complex, semi-structured data

Optimize data retrieval

10

Is It Fast?
MongoDB provides high performance for semi-
structured and hierarchical data by storing related data
together in documents, reducing the need for joins and
enabling efficient data retrieval.

11

Integration with Others

12

Data Modeling

 BSON format (binary JSON)

 Developers can easily map to modern object-
oriented languages without a complicated
ORM layer.

 lightweight, traversable, efficient

 Collections & documents

 Embedded documents

 Arrays for one-to-many relationships

 Aggregate-oriented design

13

Data Dictionary – Neurological Patient
o Patient Document

o patientId (String): Unique identifier of the patient
o demographics (Object): Personal and administrative

patient data
o riskFactors (Array): Known medical risk factors
o visits (Array): Clinical encounters over time
o createdAt, updatedAt (Date): Metadata for document

lifecycle
o Visit Subdocument

o visitId (String): Unique visit identifier
o date (Date): Visit date
o complaints (Array): Reported symptoms
o neurologicAssessment (Object): Neurological

examination results
o diagnoses (Array): Diagnosed neurological conditions

Database Visual Schema

•Single Patient document as the main aggregate
•Nested structures represent real-world hierarchy
•One-to-many relationships modeled through arrays
•No foreign keys or join tables
•Data stored together based on access patterns

Patient
 ├─ demographics
 ├─ riskFactors []
 ├─ visits []
 │ ├─ neurologicAssessment
 │ └─ diagnoses []

Terms Mapping: DB vs. MongoDB

16

JSON

17

One document

Field Name
Field Value

Field Value

◼ Scalar (Int, Boolean,
String, Date, …)

◼ Document (Embedding or
Nesting)

◼ Array of JSON objects

MongoDB Model

18

One document (e.g., one tuple in RDBMS)

One Collection (e.g., one Table in RDBMS)

• The field names cannot

start with the $ character

• The field names cannot

contain the . character

• Max size of single

document 16MB

Example Document
in MongoDB

19

• _id is a special column in each
document

• Unique within each collection

• _id ➔ Primary Key in RDBMS

• The default ObjectId value is 12
bytes, but _id can be of any data
type.

• Or:
• 1st 4 bytes ➔ timestamp
• Next 3 bytes ➔ machine id
• Next 2 bytes ➔ Process id
• Last 3 bytes ➔ incremental

values

Design Rationale – Key
Modeling Decisions

•Patient-centric document design
•Use of embedded documents for visits and diagnoses
•Avoidance of joins to optimize read performance
•Acceptance of controlled data redundancy
•Schema flexibility to support evolving clinical data
•Query-driven schema design

Data Modeling Strategies in
MongoDB

•Embedded model
•Referenced model
•Hybrid model
•Choice depends on:

•data structure
•access patterns
•scalability needs

Comparison of MongoDB Data
Modeling Approaches

Aspect Embedded Referenced Hybrid

Data locality High Low Medium

Read performance Excellent Moderate Good

Write scalability Limited High High

Query complexity Low High Medium

Document growth risk Yes No Controlled

Chosen Modeling Strategy
Embedded model selected

Patient-centric access pattern

Complete medical history retrieval

Atomic updates at document level

Hybrid model considered for large-scale
scenarios

Defined Schema

24

MongoDB does not require a predefined schema at
the storage level.
Schema constraints can be enforced using schema
validation or at the application layer.

Data Model Comparison
Relational DB vs. NoSQL

25

Data Model Comparison Relational DB vs. NoSQL

26

• Complex relationships
• Dynamic environment

RDBMS are not the best
choice

Relational Data Model

27

Document Data Model

28

MongoDB does not support joins in the
traditional relational sense.
Data relationships are modeled using embedded
documents, references, or application-level logic.

29

Data Retrieval Requirements

Retrieve complete patient history

Filter patients by diagnosis

Analyze neurological assessments

Support aggregation queries

Data Maintenance Requirements

Insert new patient documents

Append new visits to existing patients

Update nested clinical data atomically

Preserve historical medical records

Support schema evolution without migrations

Maintain consistency at document level

MongoDB CRUD Operations

Create
◼ db.collection.insertOne(<document>)
◼ db.collection. insertMany(<document>)
◼ db.createcollection()

Read
◼ db.collection.find(<query>, <projection>)
◼ db.collection.findOne(<query>, <projection>)

Update
◼ db.collection.updateOne(<query>, <update>, <options>)
◼ db.collection.updateMany()
◼ db.collection.replaceOne()

Delete
◼ db.collection.deleteOne()
◼ db.collection.deleteMany()

32

CRUD Examples

33

Multi-Document Insertion
(Use of Arrays)

34

All the documents are
inserted at once

Replace a document

35

we are replacing a document of an employee whose
name is Sonu.

Query Condition

New
doc

Update

36

we are updating the salary of those employees
whose branch is CSE

Query Language in MongoDB: Find() Operator

37

Means ascending

Find() + Projection

38

Equivalent to in SQL:

Means inclusion +
 _id is always automatically included

Find(): Exclude Fields

39

Means exclusion

Cannot mix “inclusion & exclusion” in the same operator except for _id

Means equality

Find() More Examples

db.inventory.find()

40

db.inventory.find({})

Report all documents in the “inventory” collection

Select *
From inventory;

Equivalent to in SQL:

db.inventory.find(
 { type: { $in: ['food',
'snacks'] } }
)

Report all documents in the “inventory” collection Where type = ‘food’ or ‘snacks’

Select *
From inventory
Where type in
 (‘food’, ‘snacks’);

Equivalent to in SQL:

Find(): AND & OR

41

AND Semantics

OR Semantics

AND + OR Semantics
Type = ‘food’ and (qty > 100 or price < 9.95)

Querying Complex Types

42

Documents can be
complex, E.g.,
(Arrays, embedded
documents, any nesting of
these, many levels)

Queries get complex too
!!!

Array Manipulation- Exact Match

43

Array Manipulation - Search By Element

44

Notice: if a document has “ratings” as an Integer field =
5, it will be returned

Array Manipulation - Search By Position

45

Notice: if a document has “ratings” as an Integer field =
5, it will not be returned

Embedded Object Matching
(Exact doc Matching)

46

Exact-
match
(entire
object)

// match

Embedded Object Matching
(Field Matching)

47

Find the user documents where the address’s state =
‘CA’

db.persons.find({“address.state” : “CA”}) Using dot notation

Collection Modeling

Modeling multiple collections that
reference each other

In Relational DBs ➔ FK-PK Relationships

In MongoDB, two options

◼ Referencing

◼ Embedding
48

FK-PK in Relational DBs

49

l Create “Students” relation

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),

 age INTEGER,
 gpa REAL);

CREATE TABLE Courses
 (cid Varchar2(20),
 name varchar2(50),
 maxCredits integer,

 graduateFlag char(1));

l Create “Courses” relation

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid Varchar2(20),
 enrollDate date,
 grade CHAR(2));

l Create “Enrolled” relation

Foreign key
Foreign key

◆Each tuple in
“Enrolled”
reference a specific
student and a
specific course

In MongoDB

Referencing between two collections

◼ Use Id of one and put in the other

◼ Very similar to FK-PK in Relational DBs

◼ Does not come with enforcement
mechanism

Embedding between two collections

◼ Put the document from one collection inside
the other one

Hybrid Model
50

Referencing

51

• Have three collections in the DB: “User”, “Contact”, “Access”
• Link them by _id (or any other field(s))

Embedding

Have one collection in DB: “User”
The others are embedded inside each user’s document

52

Examples (1)

“Patron” & “Addresses”

53

• If it is 1-1 relationship

• If usually read the address with the name

• If address document usually does not expand

If most of these
hold
 ➔ better use

Embedding

Examples (2)

“Patron” & “Addresses”

54

• When you read, you get the entire document at once

• In Referencing ➔ Need to issue multiple queries

Examples (3)

What if a “Patron” can have many “Addresses”

55

• Do you read them together ➔ Go for Embedding

• Are addresses dynamic (e.g., add new ones frequently)

 ➔ Go for Referencing

Examples (4)

What if a “Patron” can have many “Addresses”

56

Use array of
addresses

Examples (5)

If addresses are added frequently …

57

This array will
expand frequently

Size of “Patron”
document increases
frequently

May trigger re-
locating the
document each time
(Bad)

Example

Queries
// All stroke-related patients

db.patients.find({ "visits.diagnoses.code": { $in: ["I63", "I64"] }
})

// Patients with seizures

db.patients.find({ "visits.neurologicAssessment.seizures": true })

// Patient timeline

db.patients.find(

 { patientId: "P2005" },

 { demographics: 1, visits: 1 }

)

// Patients with Smoking risk factor

db.patients.find({ "riskFactors.name": "Smoking" })

Schema Validation
•JSON Schema validation
•Required fields enforcement
•Improves data quality
•Prevents malformed documents

index

db.patients.createIndex({ patientId: 1 }, { unique: true })

db.patients.createIndex({ "demographics.insuranceNo": 1 }, {
unique: true })

db.patients.createIndex({ "visits.diagnoses.code": 1 })

db.patients.createIndex({ "riskFactors.name": 1 })

Test that validation works
This insert has gender: "X" (invalid) →
should be rejected:

Crud operation
• Insert new patient

db.patients.insertOne({

 patientId: "P3001",

 demographics: {

 firstName: "Erion",

 lastName: "Basha",

 dateOfBirth: new Date("1990-04-18"),

 gender: "M",

 insuranceNo: "INS-3001"

 },

 riskFactors: [{ name: "Smoking", status: "Active" }],

 visits: [],

 createdAt: new Date(),

 updatedAt: new Date() })

Add a new visit for an existing patient
db.patients.updateOne(

 { patientId: "P2001" },

 {

 $push: {

 visits: {

 visitId: "V2001-2",

 date: new Date("2024-10-01"),

 complaints: ["Memory loss"],

 neurologicAssessment: {

 seizures: false,

 gcs: { eye: 4, verbal: 5, motor: 6 }

 },

 diagnoses: []

 }

 },

 $set: { updatedAt: new Date() }

 })

db.patients.find()

db.patients.findOne({ patientId: "P2001" })

db.patients.find({ "visits.diagnoses.code": { $in: ["I63", "I64"] } },

{ patientId: 1, demographics: 1 })

db.patients.find({}, { _id: 0, patientId: 1, demographics: 1 })

db.patients.updateOne({ patientId: "P2002" },

 { $set: { "demographics.insuranceNo": "INS-UPDATED-2002" } })

Add a new diagnosis to an
existing visit

db.patients.updateOne(

 { patientId: "P2001", "visits.visitId": "V2001-1" },

 {

 $push: {

 "visits.$.diagnoses": {

 code: "G45",

 description: "Transient Ischemic Attack",

 certainty: "suspected",

 diagnosisDate: new Date()

 }

 },

 $set: { updatedAt: new Date() }

 }

)

Delete the patient

db.patients.deleteOne({ patientId:
"P3001" })

Delete a diagnosis from a visit
(nested delete)

db.patients.updateOne(
 { patientId: "P2001",
"visits.visitId": "V2001-1" },
 {
 $pull: {
 "visits.$.diagnoses": { code:
"G45" }
 }
 }
)

MongoDB Aggregation
Commands

Aggregation in MongoDB is used to:
◼ analyze data

◼ transform documents

◼ compute summary statistics

◼ generate derived results

Unlike find(), aggregation:
◼ processes data through a pipeline

◼ applies transformations stage by stage

◼ returns computed and reshaped results

Filtering (SQL WHERE)

db.patients.aggregate([

 { $match: { "visits.diagnoses.code": "I63" } }

])

Aggregation and Grouping
(SQL GROUP BY)

{

 $group: {

 _id: "$visits.diagnoses.code“,

 totalOccurrences: { $sum: 1 }

 }

}

Aggregation vs SQL

SQL MongoDB Aggregation

SELECT $project

WHERE $match

GROUP BY $group

HAVING $match (after $group)

ORDER BY $sort

COUNT() $count

Conclusion

A complete non relational IS design was
presented

Supports both retrieval and maintenance

This presentation demonstrated the design of
a non-relational Information System based on
MongoDB, highlighting how document-
oriented databases effectively support
complex, hierarchical data structures and
query-driven access patterns in modern
information systems.

Questions

Thank you for your attention

Questions?

	Slide 1: Database Schema Design for a Non-Relational Information System
	Slide 2: Agenda
	Slide 3: What is NoSQL
	Slide 4: NoSQL: Categories
	Slide 5: CAP Theorem
	Slide 6: CAP Theorem
	Slide 7: The BASE Properties
	Slide 8: What does NoSQL Not Provide
	Slide 9: What is MongoDB?
	Slide 10: MongoDB: Goal
	Slide 11: Is It Fast?
	Slide 12: Integration with Others
	Slide 13: Data Modeling
	Slide 14: Data Dictionary – Neurological Patient
	Slide 15: Database Visual Schema
	Slide 16: Terms Mapping: DB vs. MongoDB
	Slide 17: JSON
	Slide 18: MongoDB Model
	Slide 19: Example Document in MongoDB
	Slide 20: Design Rationale – Key Modeling Decisions
	Slide 21: Data Modeling Strategies in MongoDB
	Slide 22: Comparison of MongoDB Data Modeling Approaches
	Slide 23: Chosen Modeling Strategy
	Slide 24: Defined Schema
	Slide 25: Data Model Comparison Relational DB vs. NoSQL
	Slide 26: Data Model Comparison Relational DB vs. NoSQL
	Slide 27: Relational Data Model
	Slide 28: Document Data Model
	Slide 29: MongoDB does not support joins in the traditional relational sense. Data relationships are modeled using embedded documents, references, or application-level logic.
	Slide 30: Data Retrieval Requirements
	Slide 31: Data Maintenance Requirements
	Slide 32: MongoDB CRUD Operations
	Slide 33: CRUD Examples
	Slide 34: Multi-Document Insertion (Use of Arrays)
	Slide 35: Replace a document
	Slide 36: Update
	Slide 37: Query Language in MongoDB: Find() Operator
	Slide 38: Find() + Projection
	Slide 39: Find(): Exclude Fields
	Slide 40: Find() More Examples
	Slide 41: Find(): AND & OR
	Slide 42: Querying Complex Types
	Slide 43: Array Manipulation- Exact Match
	Slide 44: Array Manipulation - Search By Element
	Slide 45: Array Manipulation - Search By Position
	Slide 46: Embedded Object Matching (Exact doc Matching)
	Slide 47: Embedded Object Matching (Field Matching)
	Slide 48: Collection Modeling
	Slide 49: FK-PK in Relational DBs
	Slide 50: In MongoDB
	Slide 51: Referencing
	Slide 52: Embedding
	Slide 53: Examples (1)
	Slide 54: Examples (2)
	Slide 55: Examples (3)
	Slide 56: Examples (4)
	Slide 57: Examples (5)
	Slide 58: Example
	Slide 59
	Slide 60: Queries
	Slide 61: Schema Validation
	Slide 62: index
	Slide 63: Test that validation works
	Slide 64
	Slide 65: Crud operation
	Slide 66: Add a new visit for an existing patient
	Slide 67
	Slide 68: Add a new diagnosis to an existing visit
	Slide 69: Delete the patient
	Slide 70: Delete a diagnosis from a visit (nested delete)
	Slide 71: MongoDB Aggregation Commands
	Slide 72: Filtering (SQL WHERE)
	Slide 73: Aggregation and Grouping (SQL GROUP BY)
	Slide 74: Aggregation vs SQL
	Slide 75: Conclusion
	Slide 76: Questions

