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Programming languages and paradigms

 Program - a formal description of a computation process or 

specification of computation in a programming language 

 Programming languages are formal languages 

 precise and unambiguous description of lexics, syntax and 

semantics 

 Lexics - a set of rules for forming proper words in a language 

 Syntax - a set of rules for forming meaningful sentences combining 

proper words 

 Semantics - a description of the meaning of syntactic constructions

 Based on above definition there are 2 essential programming 

paradigms (approach to programming, set of basic ideas 

and principles for groups of similar languages) :

 imperativne – description of the process of computation

 deklarative – description of the specification of computation



Imperative programming languages
 Program - a set of commands that change the values of a set of 

variables during execution (program state) 

 Assignment Command  - basic command to assign a value to a 

variable 

 Control flow commands (if-then-else, switch, while, do-while, for) 

 Categories of imperative programming languages

 Procedural - decomposition of programs into functions and procedures, 

local and global variables 

 Modular - decomposition of the program into modules, the module contains 

logically related definitions of variables, functions and data types, private 

and public part of the module 

 Object-oriented - decomposition of programs into classes, class contains 

logically related definitions of variables and functions, classes as data types 

(object types), private and public part of the class, inheritance of classes

 Structured programming style - imperative programming without 

the use of jump and interruption commands



Declarative programming languages
 Program is the specification of computation (problem description), we 

do not describe the flow of computation (problem solving)

 Functional programming languages

 Program – set of “pure” functions composed of expressions instead of 

commands

 Composition of functions and recursive functions

 There is no variables, only  immutable parameters of functions and 

identifiers for which expressions are binding (immutable variables)

 functions – functions can be parameters and / or results of other functions, a 

function can be part of a data structure (e.g. list of functions)

 Logical programming languages

 Program – a set of logical formulas that describe the properties of objects 

and relations between objects (facts) and relations between relations (rules) 

 Built-in inference mechanisms which allows giving answers to the user’s 

based on the facts and rules given in the program



Imperative and declarative PL

 Both imperative and declarative programming languages are high-

level programming languages (machine-independent 

languages) 

 Abstraction allows to produce more readable and concise 

programs in which irrelevant (technical) details are neglected. 

 Declarative programming languages are more abstract than 

imperative ones

 Imperative programming languages make abstraction based on concrete 

set of machine commands

 Declarative programming languages make abstraction based on 

 concrete set of machine commands 

 Model of computer as machine which executes commands that 

change state of memory (abstraction of flow of program 

execution)



QuickSort

Java

Haskell



Introduction to

Prolog Language



Chapter 1 – Introduction to Prolog

1.1 Defining relation by facts

1.2 Defining relations by rules

1.3 Recursive rules

1.4 How Prolog answers questions

1.5 Declarative and Procedural Meaning of 

Programs



1.1 Defining Relations by facts
 Prolog (programming in logic) is a programming 

language for symbolic, non-numeric 

computation

 Specially suite for solving problems that involve 

objects and relations between objects.

When we tried to say tom is a parent of bob

tom and bob are objects and parent is a relation between object tom and bob

In prolog, we can write like parent(tom,bob). 



Example: Family Tree 

pam tom

liz

pat

bob

ann

jim

parent(pam,bob).

parent(tom,bob).

parent(tom,liz).

parent(bob, ann).

parent(bob,pat).

parent(pat,jim).

Instances or 

relationships

A relation is defined as a 

set of all its instances



How to ask Prolog?
 ?- parent(bob,pat).  yes

 ?-parent(liz, pat).  no

 Using Variables – defined as Capital Letter
?-parent(X,liz).

 X=tom

?-parent(bob,X).

 X=ann if more than one answer, press ; to get others or press enter to stop

 X = pat

?-parent(X,Y).

 Using , to make conjunction (and)
 Who grandparent of jim?

 ?- parent(Y,jim), parent(X,Y).

 Using ; to make disjunction (or)
 ?-parent(Y,jim);parent(Y,pat).



Anonymous variable

 Suppose we want to find out if Hazel is a 

mother but we do not care whose mother she 

is:

?- mother(hazel,_).

The values of anonymous variables are not 

printed out. 

 Successive anonymous variables in the same 

clause do not take on the same value.

Matches anything, 

but never has a 

value.



Use it when a variable occurs only once and its 

value is never used.

is_a_grandmother(X):-mother(X,Y), 

parent(Y,_).

Cannot be anonymous 

because it has to occur in 2 

places with the same value.

Anonymous variable



Summary

 Use Prolog to define a relation

 User can ask back the relation defined in Prolog 
program

 Prolog consists of Clauses.  

 Each clause terminates with a full stop.

 There are concrete object or constants (such as 
tom, ann) and are called atom

 General objects (such as X, Y –starting with 
capitals) called variable.

 Questions to the system consists of one or more 
goals.



1.2 Defining Relations by rules
 Prolog clauses are three types: facts, rules and 

questions

 Facts declares things that are always 
unconditionally true e.g male(bob).

 Rules declare things that are true depending on 
a give condition
 e.g grandparent(X,Z):- parent(X,Y),parent(Y,Z).

Right-hand side is called a condition part or body

 Left-hand side is called a conclusion or head

 Questions – The user can ask the question 
what things are true.



1.3 – Recursive rules

 Sometimes, we need to write 

recursive rules in prolog, like

 Predecessor case

 predecessor(X,Z):-parent(X,Z).

 predecessor(X,Z):-

parent(X,Y), predecessor(Y,Z).

X

Y

Z

………..

Putting Comment:

/* */ => between those /* and */ are comment

% => starting from % to end of line is comment



How prolog answer questions

Informal explanations

 Prolog seeks for the goals provided  by the user as 
questions

 Prolog searches the successful path  and if it reaches 
unsuccessful branch, it backtracks to previous one and 
tries to apply alternative clauses

 That why, there is some important clues to write program 
to run faster.



Example.

has(O, P):-humanBeing(O),hasGot(O, P).

has(dragan, socks).

humanBeing(ana).

humanBeing(bojan).

humanBeing(ceca).

hasGot(ana, apple).

hasGot(ana, diamond).

hasGot(ceca, purse).



Search tree
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Declarative and Procedural Meaning of 

Programs
 Declarative Meaning – is concerned only with 

how the relations is defined by the program or 

what will be the output of the program

• Procedural Meaning – is concerned with how 

the relations are evaluated by the prolog system 

or how this output is obtained

Suggestion: Write program in declaration way and don’t worry about 

how does it compute to obtain the goals.  It would be Prolog program 

development



Summary

 Prolog programming consists of defining 

relations and querying about relations

 A program consists of clauses, and there are 

three types: facts, rules and questions.

 A relation can be specified by facts

 A procedure is a set of clauses about the same 

relations.

 Two types of prolog meanings: declarative and 

procedural meaning



Chapter 2- Syntax and Meaning of Prolog Program
 Data Objects – is composed of simple 

objects, structures, constants, variables, 
atoms and numbers.

 Atoms and number
 Atoms can create in three ways:

(1) String of letters, digits and the underscore 
character, ‘_’, starting with a lower case letter

(2) String of special characters, e.g <--->

(3) String of characters enclosed in a single 
quotes, like ‘Tom’

 Variables – can create with string of letter, 
digits and the underscore character, but 
starting with upper case character or 
underscore characters.
 E.g X, _x

 Anonymous variables, used as underscore, 
eg. _
 ?-parent(X,_).

 Lexical Scope – all variables are scoped in 
one clauses and all atoms are scoped to 
the whole program

Data objects

Simple objects structures

constants variables

atoms numbers



Structures

 Are objects that have several 
components

 The components themselves can 
be structure.
 e.g date(1,feb, 2006). or 

date(Day,feb,2006).

date

1 feb 2006

• Also called structure as terms in syntactically and it can 

represent as tree

• The root of tree is called funtor and the subtrees are 

called arguments

• Each functor is defined with two things

(1)The name, whose syntax is that of atoms;

(2)The arity- the number of arguments



Matching - Unification

 Match – given two terms, they are identical or the 
variables in both terms can have same objects after 
being instantiated
 E.g date(D,M,2006) = date(D1,feb,Y1) means

 D=D1, M=feb, Y1=2006

 General Rule to decide whether two terms, S and T 
match are as follows:
 If S and T are constants, S=T if both are same object

 If S is a variable and T is anything, S=T

 If T is variable and S is anything, T=S

 If S and T are structures, S=T if

 S and T have same funtor

 All their corresponding arguments components have to match



Declarative and Procedural Way

Prolog programs can be understood two 

ways: declaratively and procedurally.

P:- Q,R

Declarative Way

P is true if Q and R are true

Procedural Way

To solve problem P, first solve Q and then R 

(or) To satisfy P, first satisfy Q and then R



What is difference?
Procedural way does not only define 

logical relation between the head of the 

clause and the goals in the body, but also 

the order in which the goal are processed.



Declarative meaning
 Determine whether a given goal is true, and if so, for 

what values of variables it is true.

 An instance of a clause C is the  clause C with each of 
its variables substituted by some term.

 A variant of a clause C is such an instance of the clause 
C where each variable is substituted by another 
variable.
 E.g hasachild(X):-parent(X,Y).

 Two variants are:

 hasachild(A):- parent(A,B).

 hasachild(X1):-parent(X1,X2).

 Instance of this clause are:

 hasachild(peter):-parent(peter,Z).

 hasachild(barry):-parent(barry,small(caroline)).



Formal Declarative Meaning

Given a program and a goal G,

A goal G is true (that is satisfiable, or 
logically follows from the program) if and 
only if:

There is a clause C in the program such that

There is a clause instance I of C such that
 The head of I is identical to G, and

 All the goals in the body of I are true.

Conjunction= , and disjunction = ;



Procedural Meaning

Specifies how prolog answer questions

To answer a question means to try to 

satisfy a list of goals

A procedure for executing (or) satisfying a 

list of goals with respect to a given 

program.



Search tree
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Monkey and Banana
 Problem – In the middle of the room, there is a 

banana hanging on the ceiling and the monkey 
tries to reach by using a box.

• Approach
– Initial states

• Monkey is at the floor

• Money is on the floor

• Box is at window

• Monkey does not have banana

– Four types of move
• Grap banana

• Climb box

• Push box

• Walk around



Monkey and Banana(Cont’d)
move(state(middle,onbox,middle,hasnot), % before move

grasp, % grap banana

state(middle,onbox,middle,has)). % After move

move(state(P,onfloor,P,H),

climb, % climb box

state(P,onbox,P,H)).

move(state(P1,onfloor,P1,H),

push(P1,P2), % push box from P1 to P2

state(P2,onfloor,P2,H)).

move(state(P1,onfloor,B,H),

walk(P1,P2),

state(P2,onfloor, B,H)).

canget(state(_,_,_,has)). % can 1: Monkey already has it

canget(State1):- % do somework to get it

move(State1,Move,State2), % do something

canget(State2). % Get it now

?- canget(state(atdoor,onfloor,atwindow,hasnot)).  => Yes



Way of Satisfying the goal in procedural way

 If the goal list is empty -> Success

 If not, scan all clauses from top to bottom to find, 

the head to match with the goal.  If no match 

found and end of program, failure

 If found, generate variant of the goal and 

instantiate all variables from that goal to all 

reminding goal lists

 Execute recursively the new goal list until it 

reaches success or failure.



Example
 big(bear).

 big(elephant).

 small(cat).

 brown(bear).

 black(cat).

 gray(elephant).

 dark(Z):-black(Z). 

 dark(Z):-
brown(Z).

• ?-dark(X),big(X)

1. Initiate goal list: dark(X),big(X).

2. Scan to find dark(X)

1. Found dark(Z):-black(Z).

2. New goal black(X),big(X)

3. Scan 2nd goal black(X)

1. Found black(cat).

2. New goal black(cat),big(cat).

4. Go to second goal big(cat)

1. No found, so go back to black(X), big(X) 
and scan -> no found

5. Go back to dark(X), big(X) with dark(X) 
again

1. Found dark(Z):- brown(Z).

2. New goal brown(X), big(X).

6. Scan and found borwn(bear). So the goal 
shrink to big(bear).

7. Found big(bear)

8. Provide X=bear.



Orders of Clauses and Goals
 Danger of indefinite looping eg p:- p.

 When happened?.
 Declarative way is correct, but procedural way is 

wrong.  So, there is actually answer, but cannot 
reach from program.

 So how to avoid it -> many special techniques

 Carefully to rearrange
 The order of clauses in the program

 The order of goals in the bodies of the clauses



So, how to program Prolog
Do declarative way to program because it 

is easier to formulate and understand

Prolog will help you to get procedural work

 If fails, rearrange the order of clauses and 

goals into suitable order from procedural 

aspect



Representation of Lists
List is a data structure and is either 

empty or consists of two parts, called a 
head and a tail and can be represented as

 [X,Y,Z].

 [Head | Tail].

 .(Head,Tail). Where Head is atoms and Tail is 
in list

We can write [a,b,c] or .(a,.(b,.(c,[]))).

 List is handled as binary tree in Prolog



List Operations

 Checking some objects is an element of a list -> member
 e.g member(b,[a,b,c]). => true

 member(b,[a,[b,c]]). => false

 Concatenation -> conc(L1,L2,L3).
 conc([a,b,c],[1,2,3],L).=> L = [a,b,c,1,2,3]

 Adding item into list => add(X,L,L3).
 add(a,[b,c],L) => L=[a,b,c]

 Deleting Item => del(X,L,L1).
 del(a,[a,b,c],L). => L=[b,c]

 sublist => sublist(S,L).
 Sublist([a],[[a],b,c]) => true

 Permuntation => permutation(L,P).
 Permutation([a,b],P). => P = [a,b]; P=[b,a]



Operator Notation
 Can define new operator by inserting special clauses called directives, e.g :-

op(600,xfx,has).

 :-op(precedence,type of operator, functor).
 Precedence is between 1 to 1200

 Type of operator denoted with f

 Functor -> operator name

 Three group of type of operator
 Infix operator -> xfx , xfy, yfx

 Prefix operator -> fx, fy

 Postfix operator -> xf, yf

 x represents an argument whose precedence must be strictly lower than that of the 
operator

 y represents an argument whose precedence is lower or equal to that of the operator

 If an argument is enclosed with parentheses or it is an unstructured objects, then 
precedence is 0.

 If argument is structure then, its precedence is equal to the precedence of its 
principal functor.



Operator Notation (Cont’d)
-

-

a b

c

Precedence 500

Precedence 0

-

-

b c

a

Precedence 500

Precedence 0

For a – b – c case, assume that – has precedence of 500

Then, if – is yfx type, the right interpretation is not correct 

because the precedence of b – c is not less than the precedence 

of – .  Thus, use (a-b) –c 



Summary 
 Readability of the program can be improved by infix, prefix or postfix

 Operator definition introduces new notation.  Operator called functor holds 
together components of structures

 A programmer can define his or her own operators.  Each operator is 
defined by its name, precedence and type

 Precedence is an integer within some range usually from between 1 to 1200.

 The operator with the highest precedence in the expression is the principle 
functor of the expression

 Operator with lowest precedence binds strongest

 The type of an operator depends on two things:
 The position of the operator with respect to the argument

 The precedence of the arguments compared to the precedence of the operator 
itself.

 xfy -> x indicates an argument whose precedence is strictly lower than that of 
operator and y indicates an argument whose precedence is less than or equal to 
that of the operator



Arithmetic
 Basic arithmetic opeartors are

+ = addition

- = substraction

* = mutiplication

/ = division

**  =  power

//  =  integer division

mod = modulo

e.g ?- X=1+2. => X = 1 + 2

?- X is 1 + 2. => X = 3

So, is is operator for arithmetic expression

?- X is 5/2, Y is 5//2, Z is 5 mod 2.

X=2.5

Y=2

Z = 1



Comparison Operator
 X > Y => X is greater than Y

 X < Y => X is less than Y

 X >= Y => X is greater than or equal to Y

 X =< Y => X is less than or equal to Y

 X =:= Y => the X and Y values are equal

 X =\= Y => the X and Y values are not equal



 == tests whether its arguments already have 

the same value.

 = attempts to unify its arguments with each 

other, and succeeds if it can do so.

With the two arguments instantiated, the two 

equality tests behave exactly the same.



Summary
 List is either empty of consists of a head, presented as 

atom and a tail which is also a list.

 membership, conc, add, del

 The operator notation allows the user to tailor the syntax 
of programs toward particular needs and also improve 
readability

 New operators are defined by the directive op, stating 
the name of an operator, its type and precedence.

 Arithmetic is done by built in procedure.  Use is
procedure to evaluate and comparison with <, =< etc



% adding the item X to the binary dictionary T1

% (element, binary-dictionary, binary-dictionary)

add(X,nil,t(X,nil,nil)).

add(X,t(Root,L,R),t(Root,L1,R)) :- X @< Root, add(X,L,L1).

add(X,t(Root,L,R),t(Root,L,R1)) :- X @> Root, add(X,R,R1).



Functional programming 

languages, Haskell



Functional programming languages
 FP program – set of “pure” functions composed from 

expressions

 Principle of referential transparency

 Expression/function has always the same value for the same 

value of its arguments, independent on context in which 

expression/function is evaluated

 Function – expression is assigned to the name of function 

for some input parameters

 Function gets a value when it is invoked by some concrete 

values of parameters, no side-effects

 Expression is application of a function or operator on some 

arguments

 Arguments can be expressions  make function 

compositions, recursive functions



Functional programing languages

 Abstraction of flow of execution

 No commands and variables

 Immutable function parameters

 Immutable local variables

 Built-in mechanisms of expression evaluation, no need 

to know how it functions

 Conditional expression – expression value depends on value 

of some other sub-expression

 Recursion instead of loops

 Evaluation of FP program starts with a function application 

on concrete values of arguments



Characteristics of Functional PL

 FP abstracts the flow of program execution

 Shorter and more concise programs comparing to imperative 

programming

 Higher degree of abstraction  smaller number of details 

smaller possibility to make errors

 Referential transparency of functions

 Smaller possibility to make errors 
 No side effects

 Better formal analysis and validation of programs

 Greater possibility for program parallelization

 Subexpressions which are arguments of some other expression can 

be evaluated in parallel. 



Higher-Order Functions
 Higher-order functions can have functions as arguments, 

or their results are functions or both

 Example: derivation, integral

 Example.
function inc(x) = x + 1

function twice(f, x) = f(f(x))

twice(inc, 5)   7

 Three typical higher-order functions

 map f l – apply function f on each element of its argument which is list l

 filter f l – filter list l based on logical function f

 fold f l n – reduces list l according to operator (binary function) f, n is

neutral element of operator f

 Functions as elements of a data structure



Strict and ne-strict semantics
 Strict semantics

 Expression (function) can be evaluated in some value only if all its 

subexpressions (arguments) can be evaluated in some values

 Strict/eager evaluation, call by value: expression value (function)

can be evaluated after all its subexpressions (arguments) are 

evaluated

 Imperative programming languages are based on strict 

semantics, excluding logical expressions

 Non-strict semantics

 Expression (function) can be evaluated even if some its 

subexpressions can not be evaluated

 Non-strict (lazy) evaluation, call by need: Expression (function) is 

evaluated only if its value is needed

 Lazy FP languages: FP languages that support non-strict 

semantics (Miranda, Haskell)



Strict and non-strict semantics
 Examples.

 (x = 0) or (1 / x = 5)  

 for x = 0 expression has no value in strict semantics

 In non-strict semantics it has valie true     

 length [2, 2 + 4, 6 / 0, 2 + 3 * 4]

 in strict semantics function can not be evaluated as third expression can not 

be evaluated

 In non-strict semantics elements of list are not evaluated, as function returns 

length of the list

 function sqr(x) = x * x, evaluate sqr(2 + 3)

 Eager evaluation. sqr(2 + 3)  sqr(5)  5 * 5  25

 Lazy evaluation. sqr(2 + 3)  (2 + 3) * (2 + 3)  5 * 5  25



Infinite Data Structures 

 Non-strict semantics offer possibility to work with infinite data 

structures

 Example. An infinite list of 1s can be defined as an infinitely recursive 

function without arguments

function Ones = 1 : Ones

 Operator : (cons) – x : y form the list with head x, and tail y

 Ones  1 : Ones  1 : 1 : Ones  …

 function Head(h : t) = h

 Eager evaluation

Head(Ones)  Head(1 : Ones)  Head(1 : 1 : Ones) 

 Head(1 : 1 : 1 : Ones) Head (1 : 1 : 1 : 1 : Ones)  …

 Lazy evaluation

Head(Ones)  Head(1 : Ones)  1



Lambda calculus
 Theory of functions proposed by Alonzo Church 30es of 20 century

 Lambda calculation is transformation of lambda expression usin 

rules of  lambda calculus 

 lambda expression is an identifier

 If x is identifier,  e and n lambda expressions then following are 

also lambda expressions

 λx.e          lambda abstraction

 e n           application (apply e on argument n)

 Lambda abstraction is concept of anonymized function in FL

 λx.x + 1

 (λx.x + 1) 4  5

 λx y.2x + y

 (λx y.2x + y) 3 4  10



Anonymized functions
 Often used as parameters of higher-order functions

 Higher-order functions that return function as their value 

always return anonymized function

 Without anonymized function
function inc(x) = x + 1

function twice(f, x) = f(f(x))

twice(inc, 5)  7 

With anonymized function
function twice(f, x) = f(f(x))

twice(λx.x + 1, 5)  7

 Example of function which returns function as its value:

function incrementBy(x) = λy.y + x



Curry Functions
 Currying: definition of function with n arguments as n

nested functions with one argument (Haskell Curry)

orginal function λx1 x2 ... xn.e

Curry function λx1.(λx2.(λx3 ... (λxn.e))) ...)

 Examples of Currying.
function add(x, y) = x + y

function addCurry(x) = λy.x + y

addCurry(5)      λy.5 + y

addCurry(5)(10)  (λy.5 + y) 10  15



Partial function application
 Let f is function with k argumenats

 Partial application of function f is application of function f 

with less than k argumens

 Example.
function add(x, y, z) = x + y + z

add(1, 2, 3)  6

add(1, 2)     λz.3 + z

add(1)        λy z.1 + y + z 

 Partial application ≡ currying, evaluation, de-Currying



LISP (List Processing)
 First FP language has been developed in 60es, John McCarthy

 Only one type for everything – all data are s-expressions

(symbolic expressions)

 S symboli constants and numbers are i brojevi su s-expressions

 If A and B are s-expressions then (A . B) is s-expressions - pair

 If x1 x2 ... xn s-expressions then (x1 x2 ... xn) is s-expressions - lisa. () je 

empty list

 List is sequence of nested pairs

(1 2 3 4) ≡ (1 . (2 . (3 . (4 . ()))))

 The same notation for data and functions/programs –

function definition and application are also s-expressions

 (define (functionName arg1 arg2 ... argn) expression)  ≡ definition f

 (functionName arg1 arg2 ... argn)                                  ≡ application f



LISP (List Processing)
 Everything is s-expression

 Built-in functions for checking types of s-expressions: if s-expression is 

constant or number or pair or list or empty list,…

 Quote (‘) function 

 ‘(+ 1 2) – it is s-expressions i.e. list with 3 elements

 (+ 1 2)   – s-expressions evaluated in  3 (application of function +)

 Conditional expression

 (if c e1 e2) -- if c is true then value of whole expression is the same as 

value of e1, if c is false then value of whole expression is the same as 

value of e2

 If expression represents value, contraty to if command

(+ 5 (if (> 4 5) 1 2))  (+ 5 (if false 1 2))  (+ 5 2)  7



Successors of  LISP
 ISWIM (if you see what I mean), Landin, ~1960

 Infix notation instead of prefix notation for arithmetic-logic expressions

 Constructions let and where local variables binding

 SECD machine 

 FP, Backus, ~1970

 Functional programming as a composition of higher-order functions

 ML, Milner, ~1970

 Parametric polymorphism, type inference

 SASL, KRC & Miranda, Turner

 Lazy evaluation, ZF expressions for lists forming, Function definition as 

separate cases (sequence of equations) and pattern matching, guard

expressions

 Haskell, 1987, international committee

 “Grand unification of functional languages”, type classes, monads


