
Introduction to Critical
Systems

Supported by:

Joint MSc curriculum in software engineering
European Union TEMPUS Project CD_JEP-18035-2003

Version: Oct. 26, 2006

Topic 1:
Processes and Techniques for
developing Critical Systems –

An Introduction

What is a System?

 A collection of elements which are assembled
to fulfil some defined purpose. Elements may be
hardware or software components,
organisational policies and procedures and
operational processes.

 Systems have properties which are emergent

Critical Systems Engineering, @STRL 2

 Systems have properties which are emergent
i.e. they only come to light when the parts are
put together, they have structure and
mechanisms for communication and control.

 Man vs. Collection of books

 In this Module, we are only interested in
systems which include computers and where
software plays a major part in the control of the
systems.

Socio-technical computer-based
systems

Systems in which some of the
elements are software-controlled
computers and which are used by
people for some purpose (to support
some human activity). They typically

Critical Systems Engineering, @STRL 3

some human activity). They typically
include:

 Computer hardware

 Software

 Policies and procedures

 Operational processes

 Computer-based system vs. system

Examples

 A payroll system

 A navigation system

 A system for testing blood samples

 A mobile phone

Critical Systems Engineering, @STRL 4

 A ticket reservation system

 A chemical process control system

 A pollution monitoring system

 An air traffic control system

Emergent properties
 Properties which are properties of the system AS A

WHOLE rather than of the collection of parts
 Functioning bicycle (emergent: transportation device) vs. collection of

its parts.

 Not determined solely from the properties of the
system parts but also from the system’s structure and
its interactions.

Critical Systems Engineering, @STRL 5

 These properties are sometimes planned and
predictable and sometime are not planned and not
predictable.
 Mobile phone: communication device (planned) / Interfering device (not

predictable)
 Unplanned – something is difficult to use

 Examples
 The reliability of a computer depends on the reliability of

the processor, memory, keyboard, monitor, disk, etc,
but...

Emergent system-wide
properties

 Important emergent properties of a system are
 Performance
 Reliability
 Safety
 Security
 Usability
 Maintainability

These depend on the relationships between components as well

Critical Systems Engineering, @STRL 6

These depend on the relationships between components as well
as the components themselves.

For example you may end up with an unreliable system which
was build from reliable components. On the other hand
safety and security usually does not depend on individual
compononents.

 These are non-functional properties - they do not relate to
any specific functionality of the system.

 Some or all of these properties are usually more important
than detailed system functionality (unreliable -> wrong
results).

The role of software in systems
 Software in complex systems now has a number of

different roles. For example:

 Control and coordination. The operation of
different parts of the system is coordinated by a
controlling software system.

 Information management. Large amounts of

Critical Systems Engineering, @STRL 7

 Information management. Large amounts of
information that is required in many systems is
managed and organised by software.

 Input and output filtering. System inputs and
outputs are pre and post processed by software to
simplify their subsequent processing.

 User interface. The user interface to many
systems is now largely a software-based interface

 System monitoring. The operation of the system
is monitored by software and anomalies reported.

Systems engineering

 The process of specifying, designing,

implementing and installing computer-based
systems to solve some identified problem
 “To buy a bread” vs. to design a tunnel below Bosphorus.

 Generally concerned with complex systems

Critical Systems Engineering, @STRL 8

 Generally concerned with complex systems
involving hardware, software and people.

 Concerned with wider ‘systems issues’ rather
than details of a system’s functionality and
implementation. Those will be designed as
subsystems that will be engineerined in
different processes.

The systems engineering
process (idealized)

Critical Systems Engineering, @STRL 9

System and software
engineering

 Software is increasingly used in systems
because it allows for more complex
information processing AND it is
malleable - changes can be made after the
design is complete.

Critical Systems Engineering, @STRL 10

 Many software system problems are a
consequence of this malleability. Software
changes become necessary because of
problems elsewhere in the system or new
requirements that emerge when the
system is integrated.

Critical systems

 A critical system is any system whose
‘failure’ could threaten human life, the
system’s environment or the existence of
the organisation which operates the
system.

Critical Systems Engineering, @STRL 11

 ‘Failure’ in this context does NOT mean
failure to conform to a specification but
means any potentially threatening system
behaviour.

 Critical systems existed also before
computer-based systems (airplane)

Critical system classes

 Safety-critical systems
 A system whose failure may result in the loss of

human life, injury or major environment damage

 Mission-critical systems
 A system whose failure may result in the consequent

Critical Systems Engineering, @STRL 12

 A system whose failure may result in the consequent
failure of a goal-directed activity.

 Business-critical systems
 A system whose failure may result in the failure of

the business that is using that system.

Examples of critical systems

 Communication systems such as telephone

switching systems, aircraft radio systems, etc.

 Embedded control systems for process plants,
medical devices (primary).

Critical Systems Engineering, @STRL 13

 Command and control systems such as air-traffic
control systems, disaster management systems.

 Financial systems such as foreign exchange
transaction systems, account management
systems (secondary).

Critical systems usage

 Most critical systems are now computer-

based systems.

 Critical systems are becoming more
widespread as society becomes more
complex and more complex activities are
automated.

Critical Systems Engineering, @STRL 14

automated.
 However, the procedures and practices which have evolved to

integrate critical systems into society are based on much less
complex systems. In many cases, we do not really understand
what the overall impact of these critical systems will be (e.g.
automated share trading systems).

 People and operational processes are very important
elements of critical systems – they cannot simply be
considered in terms of hardware and software (socio-
technical systems).

Critical systems failure

 The cost of failure in a critical
system is likely to exceed the cost of
the system itself

 As well as direct failure costs, there

Critical Systems Engineering, @STRL 15

 As well as direct failure costs, there
are indirect costs from a critical
systems failure. These may be
significantly greater than the direct
costs.

 Here are some:

Critical systems failure-cost
 Direct costs of repairing the system - can be high if

expensive hardware is physically damaged.

 Costs of investigating the cause of the problem -
again this, can be very high if there has been an accident
with associated loss of life.

 Loss of revenue while the system is out of service.

Critical Systems Engineering, @STRL 16

 Loss of revenue while the system is out of service.

 Compensation costs for people/things damaged by
the failure.

 Legal costs associated with compensation claims.

 Re-design and change costs for other systems which
may be vulnerable to the same type of fail.

Critical systems failure-cost

 Society’s views of critical systems
are not static - they are modified by
each high- profile system failure.

 People do not necessarily react logically to
critical systems failure - they are much

Critical Systems Engineering, @STRL 17

critical systems failure - they are much
more concerned about train and plane
crashes than car accidents although cars kill
many more people annually

Critical emergent properties

 Reliability
 Concerned with failure to perform to

specification.

 Availability
 Concerned with failure to deliver required

services

Critical Systems Engineering, @STRL 18

services

 Safety (for safety-critical systems)

 Concerned with behaviour which directly or
indirectly threatens human life

 Security
 Concerned with the ability of the system to

protect itself from external attack

Critical systems development

 Critical systems attributes are NOT
independent - the systems development
process must be organised so that all of
them are satisfied at least to some
minimum level.
 security / maintainability

Critical Systems Engineering, @STRL 19

 security / maintainability

 safety / availability

 maintainability -> availability

 security -> reliabilty

 More rigorous (and expensive)
development techniques have to be used
for critical systems development because
of the potential cost of failure

Development techniques

 Use of formal methods for system

specification.

 Use of formal verification to demonstrate
that a program is consistent with its
specification.

Critical Systems Engineering, @STRL 20

 Separate teams for implementation and
testing.

 Incorporation of redundant code and self-
checking in programs.

 Redundant hardware units.

 Measurement of test coverage

Classification

 Classes of systems failures

 Class I: Physical failure

 System has failed fatally as a result of physical
disturbance of its correct functioning

 Class II: Software errors

Critical Systems Engineering, @STRL 21

 Fatal errors were caused as a result of design
error and/or not adequate testing of final
product.

 Class III: Human computer interaction

 Fatal error were caused by human fallibility

 This is rather messier in research terms because
there are many aspects of human interaction to be
considered.

Class I: Physical failure

 HMS Sheffield’s defensive systems
failure to intercept an attacking
Exocet missile.

 Cause: electromagnetic interference.
Interference from a transmission

Critical Systems Engineering, @STRL 22

Interference from a transmission
prevented her from picking up
warning signals on the electronic
support measurement equipment.

 Casualty: 20 persons died

Class II: Software errors

 Therac-25

 Cause: Change from X-ray to electron mode
therapy was performed while leaving the
intensity at the current required for X-ray
therapy.

 Casualty: 2 patients died

Source of error: Design error

Critical Systems Engineering, @STRL 23

 Source of error: Design error

 Patriot air defence system

 Cause: Round-off error in the ’range gate’
algorithm and dynamic change management
error.

 Casualty: 30 people died

 Source of error: Design error

Class III: Human computer
interaction

 Fly-by-wire Aircraft, the Airbus A320.

 Cause: The 2-man crew have
instructed the flight control system
to descend at a rapid rate of 3,300
feet/minute rather than descending
at an angle of 3.3 degrees. The two

Critical Systems Engineering, @STRL 24

at an angle of 3.3 degrees. The two
modes are represented by a similar
2-digit numbers. (The interface has
now been changed and the vertical
speed mode is represented by a 4-
digit number).

 Casualty: 2 death

Standardization efforts

 UK: MoD DEF Stan 00-55 & 00-56

The standards identified two main aspects:

a) Safety Management
 The establishment of techniques for Hazard

analysis; safety risk assessment and safety
integrity analysis (fault-tree)

Critical Systems Engineering, @STRL 25

 Certification

 Documentation

b) Software Engineering Practices
 ”...The software Specification shall include a

specification of the software using the
specification notation of a Formal Method”

 Proof obligation – Validation and Verification

Standardization efforts

Coding of a CS is done in a programming
language that has the following
characteristics:

a) a formally defined syntax;

b) a means of enforcing the use of any subset
employed;

Critical Systems Engineering, @STRL 26

employed;

c) a well-understood semantics and a formal means of
relating code to; a formal design;

d) block structure;

e) strongly typed.

 Proof obligation is done on the Source Code
by means of Path Analysis which include
control flow, data use and information flow
analysis.

Standardization efforts

 European Space Agency (ESA):

These cover the whole software
lifecycle, and, to some extent, deal
with problems at the system level.

 ESA BSSC 1A: ESA Software Engineering

Critical Systems Engineering, @STRL 27

 ESA BSSC 1A: ESA Software Engineering

 ESA BSSC: Software configuration
management

 ESA BSSC 1B: ESA Software Configuration
management standards

Standardization efforts

 USA:

In addition to the ANSI/IEEE we have
the National Bureau of Standards
(NBS)

a) NBS SP500-93: Software validation,

Critical Systems Engineering, @STRL 28

a) NBS SP500-93: Software validation,
verification and testing techniques and tool
reference

b) FIPS PUB 101: Guideline for lifecycle
validation, verification and testing of
computer software.

Key points

 Computer-based systems are socio-technical

systems which include hardware, software,
operational processes and procedures and
people.

 An increasing number of socio-technical
systems are critical systems.

Critical Systems Engineering, @STRL 29

systems are critical systems.

 Systems have emergent properties i.e.
properties which are only apparent when all
sub-systems are integrated.

 Critical system attributes are reliability,
availability, safety and security

Topic 2:

Supported by:

Joint MSc curriculum in software engineering
European Union TEMPUS Project CD_JEP-18035-2003

Version: Oct. 26, 2006

Topic 2:
Dependability-

The extent to which a critical system is
trusted by its users

The concept of dependability

 For critical systems, it is usually the case
that the most important system property
is the dependability of the system

 The dependability of a system reflects the
user’s degree of trust in that system. It
reflects the extent of the user’s

Critical Systems Engineering, @STRL 31

reflects the extent of the user’s
confidence that it will operate as users
expect and that it will not ‘fail’ in normal
use

 Usefulness and trustworthiness are not
the same thing. A system does not have to
be trusted to be useful……look at MS
products!

Dimensions of dependability

Dependability

SecuritySafetyReliabilityAvailability

Critical Systems Engineering, @STRL 32

SecuritySafetyReliabilityAvailability

The ability of the
System to deliver
Services when
requested

The ability of the
System to deliver
Services as
specified

The ability of the
System to operate
Without catastrophic
failure

The ability of the
System to protect
Itself against accidental
Or deliberate intrusion

Costs of increasing
dependability

Critical Systems Engineering, @STRL 33

Dependability costs

 Dependability costs tend to increase
exponentially as increasing levels of
dependability are required

 There are two reasons for this

 The use of more expensive development

Critical Systems Engineering, @STRL 34

 The use of more expensive development
techniques and hardware that are required
to achieve the higher levels of dependability.

 The increased testing and system validation
that is required to convince the system
client that the required levels of
dependability have been achieved.

Dependability economics

 Because of very high costs of
dependability achievement, it may
be more cost effective to accept
untrustworthy systems and pay for
failure costs (e.g. deadlocks)

Critical Systems Engineering, @STRL 35

failure costs (e.g. deadlocks)

 However, this depends on social
and political factors. A reputation
for products that can’t be trusted
may lose future business

 Depends on system type - for
business systems in particular,
modest levels of dependability may

Reliability terminology

Critical Systems Engineering, @STRL 36

Faults and failures

 Failures are a usually a result of system errors

that are derived from faults in the system

 However, faults do not necessarily result in
system errors

 The faulty system state may be transient and
‘corrected’ before an error arises

Critical Systems Engineering, @STRL 37

‘corrected’ before an error arises

 Errors do not necessarily lead to system failures

 The error can be corrected by built-in error
detection and recovery

 The failure can be protected against by built-in
protection facilities. These may, for example, protect
system resources from system errors

Topic 4:

Dependable Software
Development

Supported by:

Joint MSc curriculum in software engineering
European Union TEMPUS Project CD_JEP-18035-2003

Version: Oct. 26, 2006

Development

Programming techniques for
building dependable software
systems

Dependability achievement

 Fault avoidance

 The software is developed in such a way
that human error is avoided and thus
system faults are minimised

 The development process is organised so

Critical Systems Engineering, @STRL 39

 The development process is organised so
that faults in the software are detected and
repaired before delivery to the customer

 Fault tolerance

 The software is designed so that faults in
the delivered software do not result in
system failure

Exception management

 A program exception is an error or some

unexpected event such as a power failure.

 Exception handling constructs allow for such
events to be handled without the need for
continual status checking to detect

Critical Systems Engineering, @STRL 40

continual status checking to detect
exceptions.

 Using normal control constructs to detect
exceptions in a sequence of nested procedure
calls needs many additional statements to be
added to the program and adds a significant
timing overhead.

Exceptions in Java
class SensorFailureException extends Exception {

SensorFailureException (String msg) {

super (msg) ;

Alarm.activate (msg) ;

}

} // SensorFailureException

class Sensor {

int readVal () throws SensorFailureException {

try {

Critical Systems Engineering, @STRL 41

try {

int theValue = DeviceIO.readInteger () ;

if (theValue < 0)

throw new SensorFailureException ("Sensor failure") ;

return theValue ;

}

catch (deviceIOException e)

{ throw new SensorFailureException (“ Sensor

read error ”) ; }

} // readVal

} // Sensor

Damage assessment techniques

 Checksums are used for damage
assessment in data transmission

 Redundant pointers can be used to
check the integrity of data

Critical Systems Engineering, @STRL 42

check the integrity of data
structures

 Watch dog timers can check for
non-terminating processes. If no
response after a certain time, a
problem is assumed

Safe sort procedure

 Sort operation monitors its own
execution and assesses if the sort
has been correctly executed

 Maintains a copy of its input so that
if an error occurs, the input is not

Critical Systems Engineering, @STRL 43

if an error occurs, the input is not
corrupted

 Based on identifying and handling
exceptions

 Possible in this case as ‘valid’ sort
is known. However, in many cases it
is difficult to write validity checks

Key points

 Fault tolerant software can continue in

execution in the presence of software faults

 Fault tolerance requires failure detection,
damage assessment, recovery and repair

Critical Systems Engineering, @STRL 44

 Defensive programming is an approach to
fault tolerance that relies on the inclusion of
redundant checks in a program

 Exception handling facilities simplify the
process of defensive programming

Hardware reliability with TMR

Critical Systems Engineering, @STRL 45

Output selection

 The output comparator is a
(relatively) simple hardware unit.

 It compares its input signals and, if
one is different from the others, it
rejects it. Essentially, selection of

Critical Systems Engineering, @STRL 46

rejects it. Essentially, selection of
the actual output depends on the
majority vote.

 The output comparator is connected
to a fault management unit that can
either try to repair the faulty unit or
take it out of service.

Design diversity

 Different versions of the system are
designed and implemented in
different ways. They therefore ought
to have different failure modes.

 Different approaches to design (e.g

Critical Systems Engineering, @STRL 47

 Different approaches to design (e.g
object oriented and function
oriented)

 Implementation in different programming
languages

 Use of different tools and development
environments

 Use of different algorithms in the
implementation

N-version programming

Critical Systems Engineering, @STRL 48

Recovery blocks

Critical Systems Engineering, @STRL 49

Problems with design diversity

 Teams are not culturally diverse so
they tend to tackle problems in the
same way

 Characteristic errors

 Different teams make the same mistakes.

Critical Systems Engineering, @STRL 50

 Different teams make the same mistakes.
Some parts of an implementation are more
difficult than others so all teams tend to
make mistakes in the same place.

 Specification errors

 If there is an error in the specification then
this is reflected in all implementations

 This can be addressed to some extent by
using multiple specification representations

Specification dependency

 Both approaches to software
redundancy are susceptible to
specification errors. If the
specification is incorrect, the system
could fail

Critical Systems Engineering, @STRL 51

could fail

 This is also a problem with
hardware but software
specifications are usually more
complex than hardware
specifications and harder to validate

 This has been addressed in some
cases by developing separate

Is software redundancy
needed?

 Unlike hardware, software faults are not an

inevitable consequence of the physical world

 Some people therefore believe that a higher
level of reliability and availability can be
attained by investing effort in reducing
software complexity.

Critical Systems Engineering, @STRL 52

software complexity.

 Redundant software is much more complex
so there is scope for a range of additional
errors that affect the system reliability but
are caused by the existence of the fault-
tolerance controllers.

Structured programming

 First discussed in the 1970's

 Programming without gotos

 While loops and if statements as
the only control statements.

 Top-down design.

Critical Systems Engineering, @STRL 53

 Top-down design.

 Important because it promoted
thought and discussion about
programming

 Leads to programs that are easier
to read and understand

Error-prone constructs

 Floating-point numbers

 Inherently imprecise. The imprecision may
lead to invalid comparisons

 Pointers

 Pointers referring to the wrong memory

Critical Systems Engineering, @STRL 54

 Pointers referring to the wrong memory
areas can corrupt data. Aliasing can make
programs difficult to understand and change

 Dynamic memory allocation

 Parallelism

 Can result in subtle timing errors because
of unforeseen interaction between parallel
processes

Error-prone constructs

 Recursion

 Errors in recursion can cause memory overflow

 Interrupts

 Interrupts can cause a critical operation to be terminated
and make a program difficult to understand. they are
comparable to goto statements.

Critical Systems Engineering, @STRL 55

 Inheritance

 Code is not localised. This can result in unexpected
behaviour when changes are made and problems of
understanding

 These constructs don’t have to be avoided but they
must be used with great care.

Information hiding

 Information should only be exposed to those parts of

the program which need to access it. This involves the
creation of objects or abstract data types which
maintain state and operations on that state

 This avoids faults for three reasons:

the probability of accidental corruption of information

Critical Systems Engineering, @STRL 56

 the probability of accidental corruption of information

 the information is surrounded by ‘firewalls’ so that
problems are less likely to spread to other parts of the
program

 as all information is localised, the programmer is less
likely to make errors and reviewers are more likely to find
errors

Reliable software processes

 To ensure a minimal number of software
faults, it is important to have a well-defined,
repeatable software process

 A well-defined repeatable process is one that

Critical Systems Engineering, @STRL 57

 A well-defined repeatable process is one that
does not depend entirely on individual skills;
rather can be enacted by different people

 For fault minimisation, it is clear that the
process activities should include significant
verification and validation

Key points

 Dependability in a system can be
achieved through fault avoidance
and fault tolerance

 Some programming language
constructs such as gotos, recursion

Critical Systems Engineering, @STRL 58

constructs such as gotos, recursion
and pointers are inherently error-
prone

 Data typing allows many potential
faults to be trapped at compile time.

