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SUMMARY 
Experimental evidence on the phenomenology 
of steady-state two-phase flow in porous media 
is recorded in the well-known relative 
permeability curves published in the literature. 
A retrospective examination of such curves 
identified an important process characteristic, 
the existence of optimum operating conditions, 
i.e. conditions whereby process efficiency -
considered in terms of oil produced per kW 
dissipated by the process attains maximum 
values. A pertinent operational efficiency map 
is demarcating the overall process efficiency. 
 
OVERVIEW 
Optimum operating conditions for steady-state 
two-phase flow in pore networks were first 
predicted by the DeProF theory [1]. The 
operational efficiency of the sought process is 
measured by the energy utilization index, 
 

fEU=r/W(Ca,r) (1)
 
where, r is the oil/water flowrate ratio and 

 is the reduced mechanical 

power dissipation (including the effect of bulk 
viscosities and interfacial hysteresis on strain 
rates). Ca, the capillary number, and r, the oil-
water flowrate ratio, are the process 
operational parameters; W
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equivalent one-phase flow of water. Extensive 
simulations using the DeProF mechanistic 
model revealed the existence of optimum 
operating conditions in the form of a smooth 
and continuous locus, [r*(Ca)] in the domain of 
the process operational parameters (Fig. 6 [1]). 
The transformation originally introduced in [1], 
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where wo
~~  is the oil/water viscosity 

ratio, valid for steady-state flow conditions, 
was implemented to reconstruct laboratory 
measured data sets of relative permeabilities, 
kri(Sw), i=o,w into corresponding energy 
utilization values, fEU(r).  
Such an indicative reconstruction is depicted in 
Fig. 1, whereby a set of relperm diagrams [2], is 
transformed into energy utilization diagrams. 
 

 
Figure 1. Steady-state relative permeabilities for 
oil (□) and water (◊) & energy utilization index, 
fEU, (●) plotted against flowrate ratio, r, for two-

phase flow in a fine sand pack. Seed data from [2]. 
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Similar reconstructions were delivered for 
many (~35) published relperm diagrams 
pertaining to a variety of conditions in 
steady-state two-phase flow in sand packs, 
plug cores, glass micromodels etc. [3]. 
Observations show a universal trend that can 
be cast into an operational efficiency map 
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(Fig.2). This map consistently & rationally 
resolves the extent to which disconnected oil 
flow and associated capillarity effects regulate 
the flow and provides a guiding tool for 
designing more efficient processes.  
Process operational efficiency aspects are 
demarcated as follows: in all diagrams, relperm 
interpolation curves intersect at a certain value 
of the oil/water flowrate ratio, rx, irrespective 
of the porous medium structure, such that, 
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Considering the physical characteristics of the 
process in the far end of the Ca spectrum, i.e. 
as Ca→+∞, yields the asymptotic value of the 

flowrate ratio, , for which process efficiency 

reaches an upper limit value, , i.e. 
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CONCLUSIONS 
Plotting the kri, and the respective, fEU(logr)i, 
data sets into an operational efficiency map, 
certain interesting observations are made: 
Relative permeabilities attain the form of an S-
curve when expressed in terms of logr (useful 
to interpolate sparse relperm data).  

The flowrate ratio values for which the flow 
attains its locally maximum efficiency, r*, are 
always shifted, into higher or lower values by a 
distance d with respect to rx values where 
relative permeabilities of oil & water are equal 
(Figs 1 & 2). The shift d can be used as a norm 
for evaluating the capillarity characteristics of 
the flow [4]. 
The map provides ample qualitative and 
quantitative information on process operational 
efficiency aspects and flow characterization. 
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Figure 2. Operational efficiency map of steady-state 2-ph flow in porous media. Solid/phantom curves 
delineate the energy utilization coefficient, fEU=r/W against operational parameters, Ca & r. The thick curve, 
fEU(r*), delineates the ridge of the energy utilization surface fEU(Ca,r) and corresponds to optimum operation 
conditions, r*(Ca), whereby maximum process efficiency is attained. The asymptotes of r*(Ca) and fEU(r*) 
as Ca→+∞, depicted with dashed lines, are given respectively by  and κ/1r*      1

EU κ1*r f . 
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