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ABSTRACT 
The phenomenology of steady-state two-phase flow in porous media is recorded in the 
well-known relative permeability curves. Conventionally, relative permeabilities are 
considered as functions of saturation. Yet, this has been put into challenge by theoretical, 
numerical and laboratory studies of flow in artificial pore network models and real 
porous media that have revealed a significant dependency on the flow rates -especially 
when the flow regime is capillary to capillary/viscous and part of the disconnected non-
wetting phase remains mobile. These studies suggest that relative permeability models 
should include the functional dependence on flow intensities.  
Here, we present the outcome of extensive simulations implementing the DeProF true-to-
mechanism model algorithm, in flow set-ups spanning 5 orders of magnitude, both in the 
capillary number, Ca, and the flow rate ratio, r, and for different favorable/unfavorable 
viscosity ratio systems in a typical pore network. The systematic dependence of the 
pressure gradient (and of the relative permeabilities) on the local flow rate intensities is 
revealed. This systematic dependence can be described analytically by a universal 
scaling functional form along the entire domain of the true independent variables of the 
process, Ca and r.  
The proposed scaling opens new possibilities in improving SCAL measurements and 
implementing true-to-mechanism (flow-dependent) relative permeability maps in 
simulators. 
 
INTRODUCTION 
The conventional use of saturation as the independent variable in two-phase flow in 
porous media (PM)  is based on the oversimplifying assumption that disconnected fluidic 
elements of the non-wetting phase (NWP) (ganglia and droplets) do not move with the 
average flow but remain stranded in the pore medium matrix. This situation arises when 
flow conditions of ‘relatively small values’ of the capillary number are maintained; in 
those cases the disconnected NWP fluidic elements block part of the available flow cross-
section by a fraction analogous to the average saturation and effect a relative reduction of 
the permeability. Nevertheless, there is ample experimental evidence that disconnected 
flow is a substantial and sometimes prevailing flow pattern [1-10].  

Treating relative permeabilities as functions of the saturation is inefficient in providing 
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a correct and specific-enough description of the process across the domain of all possible 
flow conditions. The issue is extensively discussed in [11].  

A particular value in saturation does not necessarily imply that a unique disconnected 
structure (arrangement) of the NWP will settle-in. Disconnected structures of the NWP 
can be coarsely described by a spectrum of population density distributions, extending 
from distributions of ‘many-and-small’ fluidic elements (droplets and small ganglia) to 
‘fewer-and-larger’ fluidic elements (small and large ganglia). For any one of those cases, 
the corresponding superficial velocity of the disconnected NWP would not necessarily 
attain the same value. The latter would be the result of the ‘negotiation’ over the mass 
and momentum balances between the two factors inhibiting the transport of each phase, 
viscosity and capillarity, within the particular PM structure and for the particular, 
externally imposed, flow conditions. As a consequence, the effective permeability of the 
wetting phase (WP) and the NWP for any two different cluster configurations (any two 
different population density distributions) of disconnected phase would differ and, 
therefore, the corresponding values of the relative permeability to the NWP would be 
different. Yet, those different values of the relative permeability would correspond to the 
same saturation value. A universal, saturation-dependent description would be weak.  

In addition, during routine core analysis, saturation is measured indirectly and cannot 
be externally imposed directly; it is only through control of a combination of pressure 
difference and/or flow rate of the NWP or WP that the system will attain an average 
saturation. If one wants to consistently and systematically describe the process in the 
entire flow regime (extending across extreme values in the capillary number and the 
viscosity ratio), one has to consider those variables that describe the externally imposed 
conditions and contain macroscopic kinematic information, e.g. the superficial velocity of 
each phase or, equivalently, the capillary number and the flow rate ratio. Moreover, 
saturation cannot adequately (or uniquely) describe the flow conditions. This is because 
saturation alone brings no definite input to the momentum balance, therefore it is 
questionable if it can provide any information on the kinetics of the macroscopic flow.  

Observations of single phase flows within pore networks confirm that the macroscale 
pressure gradient scales linearly with the superficial fluid velocity (Darcy’s law). This 
seems to be a quite trustworthy modeling consideration in the case of two-phase flow as 
well, especially when very high superficial velocities are considered and capillary forces 
are negligible. However, at moderate/low velocities, when capillary forces are 
comparable to viscous forces, the macroscopic pressure gradient does not scale linearly 
with the flow rate. Experimental studies on steady-state two-phase flows in 2D glass-
etched pore network models [1, 2, 3], in glass beads [4, 7, 8], in virtual 3D pore networks 
[12], in glass bead columns [13], as well as in sand-pack columns [14], revealed that the 
non-linear relation between pressure gradient and flow rate can be described by generic 
power laws with different exponent values. The discrepancy between the values of the 
scaling exponents is attributed to differences associated with (a) dimensionality of the 
pertinent variables (b) measurements pertaining to different flow conditions, (c) 
dimensionality of the NWP/WP/PM system properties. Therefore, it is worth the effort to 
examine if these ‘different’ observations can be integrated in a universal power law 
relating appropriate dimensionless variables of the process. 
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The novelty of the present work pertains to: (a) revealing the systematic dependency 
of the pressure gradient, and of the relative permeabilities, on the flow conditions, in the 
form of extensive maps spanning across orders of magnitude over the capillary number 
and the flow rate ratio; (b) constructing a universal scaling function (or law) that 
describes analytically the dependence of the pressure gradient, and relative 
permeabilities, on the flow conditions. That came as a result of extensive simulations 
spanning 5 orders of magnitude in both the capillary number and flow rate ratio, 
implementing the DeProF model algorithm. The latter is build around a true-to-
mechanism, stochastic scale-up model for steady-state two-phase flows in pore networks 
[15]. The model itself is based on the concept of decomposing the entire flow into a 
mixture of 3 prototype flows (connected-NWP pathway flow, small and large ganglion 
dynamics, drop traffic flow) each with a different degree of disconnection of the NWP 
(see next sections) Significant and systematic changes in the mixing of the 3 prototype 
flows were exposed [15]. 

 
BASICS OF STEADY-STATE 2-PHASE FLOW IN POROUS MEDIA 
Consider the simultaneous, one-dimensional concurrent flow of a non-wetting phase and 
a wetting phase across a porous medium control surface, A~ , at flow rates equal to nq~  
and wq~  respectively. Corresponding pressure differences, are induced upon the two 
phases. The phenomenological fractional flow Darcy relations that describe the steady-
state, fully developed process, whereby the pressure gradient is common in both fluids, is 
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Note that, in the conventional Darcy formulation pertaining to the description of 
fractional flows, apart from the flow rates and relative permeabilities, the pressure 
gradients, ( ) wnizp i ,~~ =ΔΔ , are also indexed to account for different values along 
the NWP and WP. Nevertheless, in steady-state conditions, especially when the flow is 
fully developed, both phases share a common macroscopic pressure gradient, ( )zp ~~ ΔΔ , 
and the indexing may be dropped-out (see Appendix I, eqn (I-2), in [11]).  

In general, two-phase flow in pore networks is impeded by the combination of viscous 
and capillary forces. A relative measure of the viscous over the capillary forces is 
provided by the value of the capillary number, Ca, conventionally defined as 
 nw

~~~ γµ= wwUCa  (2) 
where nwγ

~ , the interfacial tension between the two phases.  
The set of superficial velocities may be appropriately reduced and replaced by a set of 

dimensionless variables, i.e. the capillary number, Ca, and the N/W flow rate ratio, 
 wnwn UUqqr ~~~~ ==  (3) 

where wµ
~  is the viscosity of the WP and nwγ

~  is the NWP/WP interfacial tension. 
In particular, when steady-state conditions develop, the flow rate ratio is equal to the 

mobility ratio (see Appendix I in [11]) 
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where 
 wn µµ=κ ~~  (5) 

is the NWP/WP bulk viscosity ratio. 
 

PREDICTION OF STEADY STATE RELATIVE PERMEABILITIES  
The mechanistic model DeProF for immiscible, steady-state two-phase flow in pore 
networks predicts the reduced macroscopic pressure gradient, given the capillary number, 
NWP/WP flow rate ratio and the properties of the NWP/WP/PM system [15]. The model 
is based on the concept of decomposition in prototype flows, hence the acronym DeProF. 
It takes into account the pore-scale mechanisms and the sources of non-linearity caused 
by the motion of interfaces, as well as other complex, network-wide cooperative effects, 
to estimate the conductivity of each class of pore unit cells in a statistical sense. It 
implements effective medium theory with appropriate expressions for pore-to-macro 
scale consistency for NWP and WP mass transport, to derive an implicit algebraic 
relation invoking the macroscopic pressure gradient, the capillary number, Ca, the flow 
rate ratio, r, the  viscosity ratio, κ , the advancing and receding contact angles, 00 , RA θθ  
(wettability), and a set of parameters that describe the geometrical, topological and 
structural characteristics of the pore network, xpm. 

Using the DeProF model, one can obtain the solution to the problem of steady-state 
two-phase flow in porous media in the form of the following transfer function 

 ( )pmx,,,;, 00
RArCaxx θθκ=  (6) 

where 
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is the reduced macroscopic pressure gradient, i.e. the actual pressure gradient divided by 
the pressure gradient of an equivalent one-phase flow of water at superficial velocity 
equal to wU

~  [the 2nd component of the product in eqn (7).]. By definition, the reduced 
pressure gradient is essentially the inverse of the relative permeability of the WP. Using 
the equivalence between the flow rate ratio and the mobility ratio, eqn (4), we may 
recover the relative permeability of the NWP as 
 rwrn rkk κ=  (8) 

In a recent work, extensive simulations implementing the DeProF algorithm have 
been carried out to derive maps that describe the dependence of the flow structure on the 
independent flow variables, namely the capillary number, Ca, and the flow rate ratio, r, 
or, equivalently, to the reduced, superficial velocities of NWP and WP [15]. The 
simulations span 5 orders of magnitude in Ca ( 4log9 −≤≤− Ca ) and r 
( 2log2 ≤≤− r ) over sufficiently fine steps. Fluid systems with various –favorable and 
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unfavorable- viscosity ratios (9 in total), have been examined.  
Predictions of the reduced pressure gradient, x, are presented in Figure 1 for a typical 

NWP/WP/PM system with viscosity ratio 5.1=κ . The diagrams furnish the projections 
of the ( )jiij rCax ,  predicted values on a constant log Ca (a) and logr (b) planes. Markers 

are connected into iso-Ca and iso-r groups. 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            (a)                                                         (b) 
 
Referring to Figure 1(a) we observe that at the high-end of the flow-rate ratio domain, 

all curves pertaining to constant-Ca values tend to bundle and align asymptotically to a 
straight line (dashed), having the functional form 

 rxrx κ=⇔+κ= logloglog  (9) 

Equation (9) states that at sufficiently large Ca values the reduced pressure gradient 
becomes a linear function of the flow rate ratio, with the linearity constant equal to the 
viscosity ratio. This is physically sound as, at high Ca values, capillarity effects fade 
away and the flow is regulated mainly by viscosity disparity, accounted by the viscosity 
ratio, κ . Essentially, what eq (9) describes is the decoupling between the flows of the 
NWP and the WP at very large flow rate values, ∞→r . At this limit, we can recover a 
linear relation between the reduced pressure gradient and the flow rate ratio, eqn (9). The 
higher the r values, the earlier (in terms of Ca values) the approach to that decoupled-
flow behavior /phenomenology, and the recovery of eqn (9). 

We may observe a similar trend in Figure 1(b). At the low-end of the Ca domain, all 
iso-r curves tend to cluster /bundle and align asymptotically to a straight line with 
negative inclination. This asymptote is illustrated by the dashed line. Now the functional 
form is given by the expression, up to a constant, Ca0, 

 CaCa
xCaCaxCa

0
0loglogloglog,0logFor κ

=⇔−−κ=<<  (10) 

This line extends down to a threshold value in Ca. For the NWP/WP/PM considered 
the threshold value is estimated at 5.7log −≈Ca . Eqn (10) states that relative 

-9 ≤ logCa ≤ -4 
-2 ≤ logr ≤ 2 

Figure 1   
Reduced pressure 
gradient values, x, 
for different values, 
(a) of the capillary 
number, Ca, and (b) 
of the flow rate 
ratio, r. Both 
diagrams pertain to 
a typical value of 
the viscosity ratio, 

5.1=κ . 
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permeability to the NWP drops down to a minimum, i.e. most of the NWP is immobile. 
Once more, eq (10) describes the decoupling between the flows of the NWP and WP at 
very low Ca values. The lower the value of flow rate ratio, r, the earlier (i.e. from higher 
Ca values) this asymptotic behavior is observed. 

We will continue with deriving a universal function that can describe the dependence 
of the reduced pressure gradient -and of the relative permeabilities, on the independent 
variables of the process, the capillary number and the flow rate ratio. 

 
UNIVERSAL FUNCTIONAL FORM OF REL. PERMEABILITIES 
The DeProF model predicted values ( )jiij rCax ,  of the reduced pressure gradient for 
different flow set-ups, i.e. different values of the capillary number, Ca, and the flow rate 
ratio, r, may be described by the universal scaling form 

 ( ) ( ) rCaArCax log10loglog,log κ+=  (11) 

where the functional ( )CaA log  needs to be determined. We may implement least squares 
approximation fitting, to determine the values ( )ii CaAA log=  pertaining to constant 
capillary number values, iCalog ,  
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where Ni is the number of detected points (xij) pertaining to the constant capillary number 
value, iCaCa = . The set of (Ai, Cai) values is plotted on the diagram of Figure 2.  

We may observe that the markers are lined-up against two straight line asymptotes; 
one with negative inclination and the other coinciding with the horizontal axis; these meet 
at an oblate angle. We may fit the set of ( )ii ACa log,log  values by a function of the form 

 ( ) ACACxCa logloglog 3
2

00 ++=  (13) 

where coefficient C0 is a measure of the overall distance 
(approach) to the two asymptotes (the higher this value, 
the greater the distance to the asymptotes), 31 C  is the 
slope (gradient) of the inclined asymptote and x0 is the 
abscissa of the intersection of the two asymptotes. The 
values of these coefficients, pertaining to the particular 
NWP/WP/PM system, are: 3.40 −=x , 003.00 =C , 

16.13 −=C . Note, eqn (13) is an implicit function of 
logA in terms of logCa. 

Using the analytical expressions from eqs (11) and 
(13) with the proper coefficient values, we may plot the 
fitted values of the reduced pressure gradient in terms of 
Ca and r, ( )rCax , .  

Figure 2  Coefficient A, eqn 
(11). Markers fitted by 
function logA(logCa), eqn (13) 
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In the diagrams of Figure 3 we observe that not only the DeProF predicted values 
( )jiij rCax ,  are recovered with great specificity, but the trend at extreme flow conditions, 

maintains its physically-true characteristics. 
 

Figure 3  Plot of the 
reduced pressure 
gradient values, x, in 
terms of the flow set-up 
conditions, capillary 
number, Ca, and flow 
rate ratio, r. based on 
eqs (11) and (13), Table 
1. (a) iso-Ca curves; (b) 
iso-r curves. Note, the 
iso-Ca curves in (a) do 
not correspond to the 
iso-Ca curves presented 
in Figure 1(b).  
 

                              (a)                                                               (b) 
 
Plots of the relative permeability of the WP and the NWP, krw and krn, in terms of 

logCa and logr, presented in Figure 4, can readily be produced using eqs (7) and (8). 
 

 
 
 

 
Figure 4   
Plots of the WP relative 
permeability, krw (top row), and 
the NWP relative permeability, 
krn, (bottom row), in terms of 
the flow set-up conditions, 
capillary number, Ca, and flow 
rate ratio, r. Again, the two 
diagrams show: (a) iso-
capillary curves; (b) iso-flow-
rate-ratio-curves. Note, the krn 
plots are scaled from the krw 
plots according to the provision 
of eqn (8).  

 
 
 
 
 
 

                            (a)                                           (b) 

-2 ≤ logr ≤ +2 

-9 ≤ logCa ≤ -4 

 

-2 ≤ logr ≤ +2 -9 ≤ logCa ≤ -4 

-9 ≤ logCa ≤ -4 -2 ≤ logr ≤ 2 
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CONCLUSION 
Two-phase flow in porous media is burdened, not only with the bulk phase viscosities of 
NWP & WP, but also with the disconnection of the NWP and the associated capillarity 
effects induced by the formation of numerous NWP/WP menisci, that restrain and inhibit, 
to a certain extent, the superficial transport of NWP and WP. The momentum balance in 
the entire flow is regulated by the relative intensities of the NWP and WP flows (inducing 
Stokes flow viscous resistances within the bulk phases) and the degree of disconnection 
of the NWP (inducing Young-Laplace capillary resistance across the NWP/WP 
interfaces).  

Results show the rheology of the NWP/WP/PM system shows a progressive mutation. 
In the ultra-low Ca regime the system shows a Bingham-fluid type rheology, whereby 
most of the disconnected NWP remains stranded. As Ca is progressively increased the 
flow attains a mixed capillarity to capillarity/viscosity dominated rheology. This is a 
result of the restructuring (reorganization) of the disconnected NWP flow into larger 
ganglia of increased mobility. With further increase in Ca the system attains –
asymptotically- a Darcy-type flow rheology whereby the reduced pressure gradient 
becomes a linear function of flow rate intensities. The macroscopic phenomenology of 
the process described by the maps in Figures 1, 2 & 4 can be explained on the basis of the 
associated restructuring/reorganization of the NWP flow through connected and 
disconnected fractional flows [15].  

The results suggest that it is possible to derive/use universal, true-to-mechanism 
functions of flow dependent relative permeabilities. Flow conditions are described by the 
flow intensities of the NWP and WP or, equivalently by the capillary number of the WP, 
Ca, and the NWP/WP flow rate ratio, r.  

The proposed scaling function opens new possibilities in improving SCAL 
measurements by restructuring SCAL protocols in a smart way [11]. In addition, true-to-
mechanism, flow dependent relative permeability maps may be incorporated in field-
scale simulators and substantially improve their predictive capabilities/performance in 
terms of specificity. 
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