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ABSTRACT 
 
The problem of saturated flow within a homo-

geneous and isotropic pore formation, confined 
between two horizontal impermeable planes, under 
7-spot injection-extraction well pattern is consid-
ered. Such well patterns are typically implemented 
in soil remediation or enhanced oil recovery pro-
cesses. Extraction wells (rectilinear sinks) are uni-
formly distributed over the reservoir domain, creat-
ing a honeycomb pattern of identical hexagons. An 
injection well (rectilinear source) is located at the 
centre of each hexagon. Uniform strength is consid-
ered for all sources. In that context, the flow within 
every hexagon can be partitioned into identical 
flows in each of the six equilateral triangles. To 
furnish the analytical expressions for the pressure 
and velocity fields, we have to solve an interior 
Neumann problem for the Laplace equation, con-
sidering that the normal derivative of the pressure is 
known on the boundary of the equilateral triangle. 
To deal with this unconventional geometry (the 
method of separation of variables is not applicable) 
we implement the new method provided by Dassios 
and Fokas in [1], whereby the authors study bound-
ary value problems for the Laplace, the Helmholtz 
and the modified Helmholtz equations in the interi-
or of an equilateral triangle. 
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INTRODUCTION 

 
Saturated flow in porous media is a core phys-

ical process with many engineering applications, 
mainly related to groundwater management (cap-
ture zones in pumping wells, salt-water intrusion in 
coastal aquifers, replenishment), seepage analysis 
of dams, discharge of wells near rivers, etc. The 
basic phenomenology of saturated flow is described 

explicitly providing a linear rela-
tion between the superficial velocity (volumetric 
flowrate intensity) and the field pressure gradient, 
whereby the linearity constant is the ratio of the 
porous medium absolute permeability to fluid (wa-
ter) viscosity. A variety of problems can be treated, 

either analytically or semi-analytically as long as 
these can be described in typical geometries. The 
solution of problems in more sophisticated or atypi-
cal geometries requires the implementation of ap-
propriate numerical schemes. A collection of prob-
lems treated with various methodological approach-
es can be found in [2, 3].  

An equally important physical process, in 
terms of engineering applications, is the unsaturated 
flow, or immiscible two-phase flow, in porous me-
dia. Indicative applications can be found in irriga-
tion and drainage, i.e. the simultaneous flow of 
water and air, and in pollution of aquifers and the 
associated remediation interventions, water flood-
ing of oil reservoirs, enhanced oil recovery, CO2 
sequestration etc. i.e. the simultaneous flow of a 
wetting and a non-wetting phase. The governing 
equation for unsaturated (or two-phase) flow in 
porous media is produced by extending the conven-
tional Darcy law to the fractional Darcy law, by 
introducing the concept of the effective permeabil-
ity of each phase to account for the hydrodynamic 
and capillary coupling observed during the simulta-
neous flow of both phases. Conventionally, effec-
tive permeabilities are treated as functions of the 
saturation. Nevertheless, there are many inadequa-
cies in correctly describing the flow with this ap-
proach. The recently developed mechanistic model 
DeProF and corresponding theory for steady-state 
two-phase flow in porous media [4] has derived a 
universal scaling law for the reduced pressure gra-
dient in terms of the actual independent variables of 
the process, i.e. the local values of the superficial 
velocity of oil and water [5, 6].  

Now, with the availability of an explicit scal-
ing law describing the process, the associated two-
phase (unsaturated) flow problem can be trans-
formed into an equivalent one-phase (saturated) 
flow problem.  

To this end any development of analytical so-
lutions for the saturated flow problem in difficult, 
non-trivial or atypical geometries, would enhance 
our capability of understanding the flow response to 
various configurations and to design more efficient 
processes. One such atypical geometrical configura-
tion is the 7-spot injection-extraction pattern [2, 7].  

 
The 7-spot pattern flow equivalence analy-

sis. The case of the 7-spot pattern flow arrangement
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FIGURE 1 
Modular break-down of a 7-spot pattern well pattern formation (a) Layout of the 7-spot formation  

). The honeycomb pattern extends 
infinitely in both directions. (b) The 7-spot pattern hexagonal building block (c) the modular unit cell 

(equilateral triangle). 
 
within a homogeneous and isotropic porous medi-
um will be considered. A schematic representation 
of the 7-spot pattern is provided in Figure 1, where-
by production wells (rectilinear sinks) are uniformly 
distributed over a reservoir field and create a hon-
eycomb pattern of identical right hexagonal prisms, 
with lattice constant, . An injection well (rectilin-
ear source) is located at the axis of each hexagonal 
prism. If the whole space is filled with these identi-
cal prisms (7-spot modules), then it can be shown 
(by inductive reasoning) that in the asymptotic 
limit, the ratio of sources to sinks is ½, i.e. the 
number of sinks is twice the number of sources. In 
the present work,  indicates a point source and  
indicates a point sink. Because of the porous medi-
um homogeneity and isotropy and the geometrical 
symmetry, we can postulate that solving the prob-
lem in the infinitely extending 7-spot layout (de-
picted in Figure 1) is equivalent to solving the prob-
lem within an equilateral triangle with impervious 
sides. Suppose the strength of any source (specific 
flowrate or volume flowrate per unit source legth) is 
qi and, similarly, the strength of any sink is qp. The 
dimensions of both strengths are L2T-1. Because of 
the 7-spot geometrical symmetry, to find the 
flowrate per source (or sink) unit length within the 
isolated equilateral triangle (with impervious sides), 
volume balance suggests that 626 pi qq , there-

fore 
ip qq2 . 

 
Analytical/mathematical implications in 

triangular geometries. It is well understood that 
solving analytically the Laplace equation inside a 
triangle (given any type of Dirichlet, Neumann, 
Robin or mixed type boundary conditions) is not 
possible because there is no coordinate system 
matching the triangular geometry configuration 

upon which, when expressed, the Laplace partial 
differential equation can be separated into two (for 
2D problems) independent ordinary differential 
equations.  

Nevertheless, the particular case of the Di-
richlet (or Neumann) problem for the solution of the 
Laplace equation within an equilateral triangle can 
be handled in an analytical manner, using the novel 
method introduced by Dassios and Fokas [1]. In 
their paper Dassios and Fokas manage the so called, 

d present a procedure for the 
solution of boundary value problems for the La-
place, the Helmholtz and the modified Helmholtz 
equations in the interior of an equilateral triangle. 
So far there have been two applications of the Das-
sios & Fokas method. In [8], the Laplace equation 
was solved in an exterior non-convex domain which 
is the Kelvin image of an equilateral triangle- sub-
ject to Neumann boundary condition, while in [9] 
Baganis and Hadjinicolaou derive an analytic solu-
tion of the corresponding Dirichlet problem. 

Here we present a methodological roadmap 
one has to follow in order to derive an explicit ana-
lytical solution for the sought problem, i.e. interior 
Neumann problem for the Laplace equation. 

 
 

STATEMENT OF THE PROBLEM 
 
Consider a point source with strength Q at 

0,33r  and a pair of sinks with equal strength 

2Q , at positions 2,631r  and 

2,632r . The vectors r1, r2, r3  correspond 
to the complex numbers z1, z2, z3, as introduced in 
[1] and define the vertices of the equilateral triangle 
(the length of each side is , see Figure 2. Follow-
ing [1], we denote, also, the sides 12 , zz , 23, zz  

qp 

qi=2qp 

qp 

 
  

 

qi 
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and 31, zz , as sides (1), (2) and (3) respectively. 

In the interior of the triangle D, the pressure 
field assumes the following form [In fact, the pres-
sure field incorporates the constant factor, k  , 

with k  the absolute permeability of the porous 
medium and the dynamic viscosity of the fluid] 

Dq
Q

QQ
p

rrrr

rrrrr 3

,ln
4

ln
4

ln
2

2

1
      (1) 

 
where rq  is a harmonic function in D , while on 

the boundary D , as the sides of the triangle are 
impervious, the normal component of the velocity 
field must be zero and the following Neumann 
condition must be imposed 

 

D
n

p
r

r
,0                            (2) 

 
Eqn (1) express the contribution of the funda-

mental solution of two-dimensional Laplace equa-
tion while eqn (2) yields the Neumann data 

3,2,1, jsq j
N

 on each side of the triangle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 
The fundamental domain D. 

 
Therefore, we have to solve an interior Neu-

mann problem for the Laplace equation and the 
well-known compatibility condition (representing 
the mass balance within D) 

 

0
D

dl
n

q
r

r
                                          (3) 

 
must be valid for a solution to exist.  

With respect to the same parameter 
2,2s , the following set of vector paramet-

ric representations, sr , and unit normals, N , are 

considered on the 3 sides of the equilateral triangle, 
see Figure 2: 
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The first step in implementing the method is 

the evaluation of the Neumann data 
3,2,1, jsq j

N
, with respect to s , that define the 

new functions  
 

    3,2,1,
2

1
2

2

jdssqekF j
N

ks
j

              (5) 

 
Next, one has to recover the unknown Di-

richlet data 3,2,1, jsq j , on the boundary 

D . In [1, Proposition 3.3] the authors establish the 
so-called Neumann-to-Dirichlet map for the gener-
alized Helmholtz equation. In the specific case of 
Laplace equation we can simplify the result by 
straightforward calculations as follows.  

 
Proposition 2.1. Let the real valued function 
yxq ,  satisfy the Laplace equation in D , with 

Neumann boundary conditions 
 

      3,2,1, jsfsq j
j

N
                     (6) 

 
whereby the known functions jf  satisfy the com-

patibility condition  
 

      0
2

2

321 dssfsfsf                              (7) 

 
Then, the Dirichlet data 3,2,1, jsq j  can 

be expressed in terms of the known Neumann data 
by the Fourier series 
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where 

     11
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and 
    3,2,1, jkFj

                           (13) 

are given in [5]. 
We are ready now to apply the above proposi-

tion to the problem at hand.  
 

DETERMINATION OF THE UNKNOWN DI-
RICHLET DATA 

 
In view of (2), straightforward differentiation 

of (1) yields the Neumann data 
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and the compatibility condition (7) is satisfied. 

We define the functions  
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Then, the Dirichlet data on each side of the tri-

angle can be expressed by the series 
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The harmonic function rq  enjoys the classi-

cal integral representation in D  
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where the integration is taken in the positive direc-
tion, nD denotes the outward normal derivative 

on D  and rdl  is the line element along each 

side. 
In view of (14) and (17), the above integral 

representation provides the analytical expression for 
the harmonic function rq  or yxq ,  
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where the functions, 
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correspond to the value of the fundamental solution 
of the Laplace equation, while the functions 
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correspond to the value of its normal derivative on 
sides (1), (2) and (3) respectively.  
 
 
CONCLUSIONS 

 
In order to determine the pressure field for the 

case of saturated, 7-spot pattern flow configuration 
within a porous medium, we presented a methodol-
ogy for solving this unconventional flow problem in 
an analytical fashion.  

We first took into account the hexagonal 
symmetry and the porous medium isotropy and 
homogeneity to study the equivalent flow problem 
within any isolated building block, i.e. an equilat-
eral triangle.  

Then, we formulated an interior Neumann 
problem for the unknown harmonic function q , 

which incorporates the contribution of all sources 
and sinks placed outside the isolated triangle. To 
this end, we have first established the Neumann-to- 
Dirichlet map, since the value of the solution on the 
boundary of the fundamental domain is involved 
into its integral representation. Then, the corre-
sponding integral representation provides an analyt-
ical expression of the solution in terms of Neumann 
and Dirichlet data.  

In a future work, we need to evaluate the inte-
grals in (22), using complex analysis and simplify 

this expression as much as possible.  
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