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Abstract

We compare the results of a coupled mode method (CCMM) with those of a finite ele-

ment method (FENL) and also of COUPLE on two test problems of sound propagation and

scattering in cylindrically symmetric, underwater, multilayered acoustic waveguides with

range–dependent interface topographies. We observe, in general, very good agreement be-

tween the results of the three codes. In some cases in which the frequency of the harmonic

point source is such that an eigenvalue of the local vertical problem remains small in mag-

nitude and changes sign several times in the vicinity of the interface nonhomogeneity, the

discrepancies between the results of the three codes increase, but remain small in absolute

terms.

Keywords Underwater acoustics; range-dependent waveguides; comparison of coupled mode

and finite element codes.

1 Introduction

Solving numerically the sound propagation and scattering problem in range-dependent marine

waveguides is a task of central importance in underwater acoustics. In this paper we consider a

cylindrically symmetric environment consisting in part of a water layer overlying a multilayered

fluid sediment region that is terminated at a finite depth by a horizontal rigid substrate. The

topography of interfaces between the various layers may vary with range and the speed of sound

is, in general, depth- and range-dependent. The acoustic field is generated by a harmonic point

source located on the axis of symmetry in the water. The precise boundary-value problem that

1



we consider is stated in Section 2. We solve this problem using and comparing three computa-

tional techniques: A consistent coupled mode method (CCMM) developed by Athanassoulis and

Belibassakis, a finite element method (FENL) developed by Kampanis, Mitsoudis and Dougalis,

and the coupled mode code COUPLE, [1].

As is well-known, the classical normal-mode expansion of the acoustic field in a horizontally

stratified medium, [2, 3], has been extended in various directions to provide approximations to

the solution of the propagation and scattering problem in range-dependent acoustic waveguides.

For a slowly-varying bottom or interface topography the adiabatic mode method proposed by

Pierce, [4], approximates the acoustic field by neglecting the interaction between the modes.

This approach has been pursued and extended in subsequent works (see e.g. Pierce, [5]), in

which several types of corrections to the adiabatic approximation have been introduced. In

the presence of steeper bottom or interface slopes, coupling between the modes becomes signif-

icant. To treat this problem Evans, [6, 1], constructed a coupled-mode model by subdividing

the waveguide into a finite number of adjacent columns. Then, the wave field is represented as

a normal-mode series within each one of the elements; the coefficients are obtained by matching

the expansions at the inter-element vertical interfaces. The main feature of this model, and of

the widely used associated code COUPLE, [1], is the full coupling between the modes and the

satisfactory handling of the backscattering effect. However, approximating the various contin-

uous functions of the problem by piecewise constants usually requires a large number of steps,

since the horizontal staircase step should be small enough for accuracy purposes.

Other coupled-mode approaches for treating irregular bottom or interface topographies have

been developed, for example, by Rutherford and Hawker, [7], Brekhovskikh and Godin, [8],

Fawcett, [9], Chiu et al., [10], and Godin, [11], with the following issue in mind: It is well

known, [7, 11], that the series of standard local vertical modes converges very slowly, since at a

rigid bottom (or at a penetrable interface) these modes satisfy an incorrect Neumann boundary

condition (transmission condition), wherein the normal derivative operator ∂
∂n is replaced by

the derivative ∂
∂z in the vertical direction. In the cited papers, additional terms have been

introduced in the series to handle this inconsistency of the local vertical modes at nonhorizontal

interfaces or bottom boundaries. The Consistent Coupled Mode Method (CCMM) used in this

paper (cf. also [12]), belongs to this category of coupled mode models. It employs an enhanced

local mode representation of the field in the vicinity of the variable topography by including

an additional local field function, the ‘sloping bottom (interface) mode’, whose range-dependent

coefficient provides an extra degree of freedom that is used to correct the previously mentioned

inconsistency of the local vertical modes. This series solution in the nonhomogeneous part of

the waveguide (intermediate field) is appropriately truncated and coupled, via a variational

equation, with the near- and far-field standard normal mode representation of the field in the

respective, homogeneous, parts of the waveguide. CCMM is described in detail in Section 3 of

the paper.

Finite element methods form a class of direct discretization techniques that is designed to

solve efficiently boundary-value problems that have discontinuous coefficients and/or are posed
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in domains with complex geometry, such as range-dependent waveguides. For an overview of

earlier finite element methods in underwater acoustics we refer the reader to the survey of Buck-

ingham, [13], which also includes a wealth of information and commentary on other types of

computational models. In the paper at hand we use the code FENL, [14], (see Section 4), which

implements a standard Galerkin discretization of the Helmholtz equation using continuous, piece-

wise linear functions on a triangulation of the computational domain. At an artificial outflow

boundary far from the source the finite element solver is coupled to a nonlocal, nonreflecting

Dirichlet-to-Neumann (DtN) boundary condition that uses the normal-mode representation of

the outgoing solution in the homogeneous far-field portion of the waveguide. This type of con-

dition, discretized properly, cooperates well with an interior finite element solver and allows for

the perfect absorption of outgoing radiation in the waveguide under consideration. It was in-

troduced in finite element approximations of underwater acoustics problems by Fix and Marin,

[15], and was analyzed in detail by Goldstein, [16]; see also Keller and Givoli, [17], for a wider

class of applications. For error estimates, cf. [16, 18]. At an inner artificial boundary in the near

field we used, in general, the CCMM-computed field as a nonhomogeneous Dirichlet boundary

condition for the FENL. Thus, the FENL code is not self-contained as it stands, and depends on

modal data at the inner boundary. (The use of a modal starter causes apparent resonances at

some frequencies, as discussed at the end of Section 5.) The resulting large, sparse, indefinite,

complex linear systems of finite element equations are solved by preconditioned iterative meth-

ods based on the conjugate-gradient type/non symmetric Lanczos schemes of the QMR method

of Freund, [19]. For a detailed experimental study of the application of such iterative methods

on discretizations of the Helmholtz equation such as the ones considered here, cf. Mitsoudis,

[18].

We performed many numerical experiments and compared in some detail the results of the

three codes on two test problems with one lossless sediment layer separated from the water

column by a hill- and a trench-like interface, respectively. In the near- and far-field parts of the

waveguide we assume that the interface is horizontal and lies at the same depth. We believe that

there is a need for comparing and validating the results of codes that use different methods for the

same mathematical model on interesting benchmark problems. This has been done extensively

in the case of the Parabolic Equation in 2D (see e.g. Buckingham, [13], for a convenient list of

references), but a similar comprehensive study is still lacking for Helmholtz solvers in underwater

acoustic range-dependent waveguides. (There are, of course, many numerical results for the

benchmark pressure-release wedge, [13], for which a special, exact solution is available, [20].

In addition, many smaller scale comparisons of pairs of particular codes can be found in the

literature. We have made no systematic search but we mention, for example, Fawcett,[9], in

which a comparison between the results of a coupled method and a boundary element method is

recorded, and Ref.[21], where an earlier version of FENL was compared to MODE4, a coupled

mode method written by Taroudakis, [22, 23]).

In our numerical experiments, presented in Section 5, we found that, in general, the results

of the three codes were in very good agreement. We noticed larger discrepancies at some
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source frequencies, for which some eigenvalue k2
n(r) of the local, depth eigenvalue problem,

that defines the local modes, changed sign several times and remained small in magnitude in the

neighborhood of the nonhomogeneity in the interface topography. In the near- and far-field parts

of the waveguide the domain is assumed homogeneous and the eigenvalues are constant and are

associated either with a propagating mode, if they are positive, or with an evanescent one if

they are negative. (For the source frequencies that we used, the eigenvalues in the homogeneous

parts of the waveguide were nonzero.) As the interface is perturbed, forming in our case a hill

or a trench supported on a bounded interval I in range, some eigenvalue of small magnitude

may, often repeatedly, change sign in I before returning to its constant, nonzero value when the

interface becomes again horizontal for large enough r. In such a case the corresponding mode is

‘confused’, changing its character repeatedly in I from propagating to evanescent and vice versa.

(A source frequency for which this happens may be thought of as a ‘multiple cut-off’ frequency

for the particular mode.)

It is not unreasonable to expect that schemes that use modal expansions may experience

computational instabilities near such frequencies. If the interface was horizontal, the modal

amplitude functions Pn(r) (cf. Eq. (28)) would be Hankel functions with argument knr, which

are singular if kn = 0. Hence, it is of interest to study how this multiple cut-off phenomenon

affects coupled mode schemes in cases of variable interface topography and to compare their

results with those of a finite element scheme. In our numerical experiments, as we document

in detail in Section 5, we observed indeed somewhat larger discrepancies between the results of

the three codes in some cases of multiple cut-off frequencies, compared with the discrepancies

at ‘regular’ source frequencies. However, these discrepancies were, in general, small in absolute

terms. This is of some significance, since computing the sound field in such ‘ideal’ waveguides in

the case of multiple cut-off frequencies, is not easy. Of course, it may be argued that the lack of

material absorption (attenuation) in the medium, combined with the Neumann bottom boundary

condition at a finite depth, make our test examples rather unrealistic for the underwater acoustic

waveguide application, where this multiple cut-off phenomenon is not expected to occur. This

is indeed the case in practice but examples of ideal waveguides are still important as hard

benchmarks to test one’s codes on.

2 The boundary–value problem

We consider a cylindrically symmetric, range-dependent environment, which consists of a water

layer confined between a pressure-release surface and a multilayered fluid sediment bottom region

of irregular shape, terminated by a perfectly rigid substrate located at a depth H below the free

surface; see Figure 1. In the sequel, for simplicity, we shall assume that we have only one

sediment layer.

A cylindrical co-ordinate system (r, z, θ) is introduced with origin at the free-surface, the

vertical axis z being positive downwards. The wave field is excited by a harmonic point source,

located at r = 0 at an arbitrary depth z0. It is assumed that the bathymetry is described by a

4



r=rN r=rF

D
I

D
N

I0

IB

IN
IF

z=hN

z=hF

D
F

z=z0

IH

n

r

z

z=H

*

z=h(r)

O

Figure 1: Geometric configuration and basic notation. The point source is denoted by an

asterisk.

smooth function (C2 will suffice) of the form:

h(r) =











hN , r ≤ rN

hI(r) , rN ≤ r ≤ rF

hF , r ≥ rF ,

(1)

where hN and hF are constants. (We usually drop the subscript I of hI in [rN , rF ].) The

domain D of the problem consists of three parts: (i) The near-field, bounded subdomain DN

(0 < r < rN ), (ii) the intermediate, bounded subdomain DI with the range-dependent part of

the interface, and (iii) the far-field, unbounded subdomain DF (r > rF ). The vertical artificial

interface between DN and DI is denoted by IN , and the one between DI and DF by IF .

The parts of the free surface, the water–sediment interface, and the hard bottom surface lying

between the two cylinders r = rN and r = rF are denoted by I0, IB and IH , respectively. In the

sequel we shall sometimes use the generic symbol D∗ to denote any one of the three subdomains

DN , DI , DF . That is, ∗ ∈ {N, I, F}. The sound speed is considered to be range-independent

in DN and DF (i.e. c = cN (z) and c = cF (z), respectively), and varies smoothly from its

near-field to its far-field value within each layer in the intermediate subdomain DI . The density

ρ is assumed to be constant within each layer and is equal to ρ1 in the water and ρ2 (ρ2 > ρ1)

in the sediment layer.

The formulation of the acoustic propagation and scattering problem in this environment is

classical, [2, 3]. The acoustic field satisfies in each layer the Helmholtz equation

∆p(r, z) + k2(r, z) p(r, z) = −
1

2π

δ(r)

r
δ(z − z0), (2)

where k (r, z) = ω/c (r, z) is the wavenumber and ∆p = pzz + prr + 1
r pr. The p.d.e. (2) is

supplemented by the boundary conditions

p(r, 0) = 0, r > 0 (3)
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∂p

∂z
(r, H) = 0, r > 0, (4)

the interface conditions

p continuous across z = h(r), (5)

1

ρ1

∂p(r, h(r)−)

∂n
=

1

ρ2

∂p(r, h(r)+)

∂n
, r > 0, (6)

and the radiation condition

p(r, z) behaves like an outgoing cylindrical wave as r → ∞. (7)

The normal derivative on IB, appearing in Eq. (6), is given by

∂

∂n
=

(

∂
∂z − h′(r) ∂

∂r

)

√

1 + (h′(r))2
, (8)

where h′ = dh
dr , i.e. is the outward normal of the water layer.

3 A Consistent Coupled Mode Method

3.1 Formulation of the transmission problem

The boundary-value problem (2)–(7) can be reformulated as a transmission problem in the

intermediate, bounded subdomain DI with the aid of the following general, normal-mode repre-

sentations of the acoustic field in the near- and far-field subdomains DN and DF , respectively

(see, e.g., Jensen et al., [2]):

Near field:

pN =
i

4ρ1

∞
∑

n=1

ZN
n (z0)ZN

n (z)H
(1)
0

(

kN
n r
)

+
∞
∑

n=1

CN
n ZN

n (z)J0

(

kN
n r
)

, (r, z) ∈ DN . (9)

Far field:

pF =
∞
∑

n=1

CF
n ZF

n (z)H
(1)
0

(

kF
n r
)

, (r, z) ∈ DF . (10)

In formulas (9) and (10) the functions ZN
n (z), ZF

n (z) and the numbers kN
n , kF

n , n ∈ N, satisfy

the Sturm-Liouville eigenvalue problems:

d2Z∗
n(z)

dz2
+

(

ω2

(c∗)2
− (k∗

n)2
)

Z∗
n(z) = 0, 0 ≤ z < h∗, h∗ < z ≤ H, (11)

Z∗
n(0) = 0, (12)

dZ∗
n(H)

dz
= 0, (13)

Zn

(

h−
∗

)

= Zn

(

h+
∗

)

, (14)

1

ρ1

∂Zn (h−
∗ )

∂z
=

1

ρ2

∂Zn (h+
∗ )

∂z
, (15)
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where the asterisk ∗ is N or F , respectively. Here, as usual, we put k∗
n =

√

(k∗
n)2 if (k∗

n)2 ≥ 0,

and k∗
n = i

√

−(k∗
n)2 if (k∗

n)2 < 0. We assume that the problem (11)–(15) is such that k∗
n 6= 0

for all n. The function pN satisfies Eqs. (2)–(6) in DN , while pF satisfies Eqs. (3)–(7) and the

homogeneous analog of (2) in DF . In case DN and DF consist of two homogeneous layers of

thicknesses h1 = h∗ and h2 = H−h∗, with corresponding sound speeds c1 and c2, the eigenvalues

k2
n = (k∗

n)2 may be obtained, [3], as the roots of the equation

h2

h1

ρ2

ρ1

Λ1(λ)

Λ2(λ)
cos Λ1 cos Λ2 = sinΛ1 sinΛ2, (16)

where

Λ1

(

k2
n

)

= h1

√

(ω/c1)
2 − k2

n, and Λ2

(

k2
n

)

= h2

√

(ω/c2)
2 − k2

n. (17)

We may now formulate the transmission problem PT

(

DI , k(r, z)
)

in DI as follows: Given

k(r, z) = ω/c(r, z) and the representations (9) and (10) of the pressure field in DN and DF , find

the coefficients
{

CN
n

}

n∈N
of pN and

{

CF
n

}

n∈N
of pF , and the field pI(r, z) in DI so that

∆pI + k2(r, z)pI = 0, (r, z) ∈ DI . (18)

For rN ≤ r ≤ rF we impose the boundary conditions

pI(r, 0) = 0, (19)

∂pI(r, H)

∂z
= 0, (20)

and the interface conditions

pI
(

r, h(r)−
)

= pI
(

r, h(r)+
)

, (21)

1

ρ1

∂pI (r, h(r)−)

∂n
=

1

ρ2

∂pI (r, h(r)+)

∂n
. (22)

In addition, the following matching conditions should hold on IN and IF :

pI = pN ,
∂pI

∂r
=

∂pN

∂r
on IN , (23)

pI = pF ,
∂pI

∂r
=

∂pF

∂r
on IF . (24)

3.2 Variational formulation

In order to state a variational formulation of the transmission problem PT

(

DI , k(r, z)
)

, we

consider the functional

F
(

pI ,
{

CN
n

}

n∈N
,
{

CF
n

}

n∈N

)

=

2
∑

ℓ=1

[

1

2ρℓ

∫

DI
ℓ

{

(

∇pI
)2

− k2
(

pI
)2
}

dV

+
1

ρℓ

∫

IN
ℓ

(

pI −
1

2
pN

)

∂pN

∂r
dS −

1

ρℓ

∫

IF
ℓ

(

pI −
1

2
pF

)

∂pF

∂r
dS







−
1

2ρ1

∞
∑

n=1

CN
n ZN

n (z0) , (25)
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where the arguments of the functional F are the continuously distributed values of the func-

tion pI(r, z) in DI , essentially satisfying pI(r, 0) = 0 and pI(r, h(r)−) = pI(r, h(r)+), and

the sets of coefficients
{

CN
n

}

n∈N
and

{

CF
n

}

n∈N
appearing in the representations of pN and

pF , respectively, and DI
ℓ , IN

ℓ , IF
ℓ , ℓ = 1, 2, are the parts of DI , IN , IF in the water and

the sediment, respectively. The variational principle governing the variational formulation of

the problem PT

(

DI , k(r, z)
)

can be now stated as follows, [22]: The functions pI(r, z), and

pN
(

r, z;
{

CN
n

}

n∈N

)

, pF
(

r, z;
{

CF
n

}

n∈N

)

, of the form given by (9), (10), constitute a solution

of the problem PT

(

DI , k(r, z)
)

if and only if they render the functional F stationary, i.e. they

satisfy

δF
(

pI ,
{

CN
n

}

n∈N
,
{

CF
n

}

n∈N

)

= 0. (26)

Indeed, by calculating the first variation δF of the functional (25) and using Green’s theorem,

we observe that the variational equation (26) takes the form,

δF =
2
∑

ℓ=1

1

ρℓ

[

−

∫

DI
ℓ

(

∆pI + k2pI
)

δpI dV +

+

∫

IN
ℓ

(

∂pN

∂r
−

∂pI

∂r

)

δpI dS +

∫

IN
ℓ

(

pI − pN
) ∂

∂r

(

δpN
)

dS

+

∫

IF
ℓ

(

∂pF

∂r
−

∂pI

∂r

)

δpI dS −

∫

IF
ℓ

(

pI − pF
) ∂

∂r

(

δpF
)

dS

]

+

+
1

ρ2

∫

IH

∂pI

∂n
δpI dS +

1

ρ1

∫

I0

∂pI

∂n
δpI dS

+

∫

IB

(

1

ρ1

∂pI(r, h(r)−)

∂n
−

1

ρ2

∂pI(r, h(r)+)

∂n

)

δpI dS = 0. (27)

Using standard arguments of the calculus of variations (e.g., Gelfand and Fomin, [24], or Rec-

torys, [25]), one may establish the validity of (27).

The usefulness of the above variational principle hinges on the fact that it gives one the

freedom to choose any particular admissible representation for the unknown pressure field pI in

DI . In this way, a variety of possible methods for the numerical solution of the problem can be

constructed. One possible such choice, based on local-mode series, and enabling the consistent

treatment of range-dependent problems involving general bathymetry, will be presented in the

next subsection.

3.3 The enhanced local-mode representation

For simplicity, in this section the pressure field pI in the indermediate subdomain DI is simply

denoted p. The standard local-mode representation of p is usually written (Pierce, [4], Fawcett,

[9]), as

p(r, z) =
∞
∑

n=1

Pn(r)Zn(z; r). (28)
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In Eq. (28) the functions Zn(z; r), n ∈ N, are the eigenfunctions of the following local,

vertical (depth) eigenvalue problem, posed for each r > 0:

∂2Zn(z; r)

∂z2
+
(

k2(r, z) − k2
n(r)

)

Zn(z; r) = 0, 0 ≤ z < h(r), h(r) < z ≤ H, (29)

Zn(0; r) = 0, (30)

∂Zn(H; r)

∂z
= 0, (31)

with the interface conditions

Zn

(

h(r)−; r
)

= Zn

(

h(r)+; r
)

, (32)
[

∂Zn

∂z

]

z=h(r)

= 0, (33)

where for a function φ = φ(z) we define

[φ]z=h(r) :=
1

ρ1
φ
(

h(r)−
)

−
1

ρ2
φ
(

h(r)+
)

. (34)

For each r > 0, in the series expansion (28) a finite number of terms corresponding to the

real eigenvalues (k2
n > 0, n ≤ Np), are the propagating modes, while the rest of the terms,

corresponding to imaginary eigenvalues (k2
n < 0, n > Np), are the evanescent modes.

In Eq. (28) Pn(r) may be thought as the coefficients of a generalized Fourier expansion of

p(r, z) with respect to the local basis {Zn(z; r)}n∈N
. The function Pn(r) is called the (complex)

amplitude of the n-th mode. Analytical and numerical evidence shows (see e.g. [11, 12]) that

|Pn(r)| = O
(

n−2
)

, n → ∞,

for r ∈ [rN , rF ], which implies a slow rate of convergence for the series (28). This is due to the

fact, observed e.g. by Fawcett, [9], that the jump condition (33) is incompatible with the correct

interface condition (22), when h′(r) 6= 0.

In the present paper, we propose an easily implemented extension of the representation (28),

which corrects this deficiency and provides significant acceleration of convergence for the series

(28). The main idea behind the new representation is to introduce a specific field element g(r, z),

such that the difference

pR(r, z) = p(r, z) − g(r, z) (35)

satisfies exactly the same boundary and interface conditions as the eigenfunctions Zn(z; r), i.e.

pR(r, 0) = 0, (36)

∂pR(r, H)

∂z
= 0, (37)

pR

(

r, h(r)−
)

= pR

(

r, h(r)+
)

, (38)
[

∂pR

∂z

]

z=h(r)

= 0. (39)
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Then, if the ‘residual’ field pR(r, z) is expanded in terms of the basis {Zn(z; r)}n∈N
, namely if

pR(r, z) = p(r, z) − g(r, z) =

∞
∑

n=1

Pn(r)Zn(z; r), (40)

(where for simplicity of notation, we denote again by Pn(r) the amplitude of the n-th mode of

pR), it is expected that the latter series will exhibit much better convergence properties. To

construct such a function g(r, z) we put

g(r, z) = P0(r)Z0(z; r), (41)

where

P0(r) =

[

∂p

∂z

]

z=h(r)

, (42)

and Z0(z; r) is sufficiently smooth for 0 ≤ z ≤ h(r), and satisfies the conditions

Z0 (0; r) = 0, (43)

∂2Z0(0; r)

∂z2
= 0, (44)

∂Z0 (H; r)

∂z
= 0, (45)

Z0

(

h(r)−; r
)

= Z0

(

h(r)+; r
)

, (46)
[

∂Z0

∂z

]

z=h(r)

= 1, (47)

for each r ∈ [rN , rF ]. A specific, convenient form of the function Z0(z; r) is given by

Z0(z; r) =







ρ1 h(r)

[

(

z
h(r)

)4
−
(

z
h(r)

)3
]

, 0 < z < h(r)

0, h(r) < z < H
. (48)

Other choices are also possible. The condition (47), in conjunction with Eqs. (41) and (42),

implies that
[

∂pR

∂z

]

z=h(r)

=

[

∂p

∂z

]

z=h(r)

−

[

∂g

∂z

]

z=h(r)

= 0. (49)

The function P0(r) can be interpreted as an additional degree of freedom, accounting for the

nonhomogeneity in the jump of 1/ρ times the vertical derivative caused by the sloping interface.

However, Eq. (42) cannot be used for the direct calculation of P0(r), since p(r, z) is not known a

priori. The function P0(r) will be found, along with all other amplitude functions Pn(r), n ∈ N,

during the solution procedure. By substituting Eq. (41) into Eq. (40), we obtain the following,

enhanced local-mode representation in the range-dependent subdomain DI :

p(r, z) = P0(r)Z0(z; r) +
∞
∑

n=1

Pn(r)Zn(z; r) =
∞
∑

n=0

Pn(r)Zn(z; r). (50)

The additional term P0(r)Z0(z; r), included in the right-hand side of (50), will be called the

sloping interface mode. An important consequence of the introduction of this mode, as numerical

10



evidence, [12], shows, is that the coefficients in the enhanced local-mode series exhibit a faster

rate of decay, namely are such that

|Pn| = O
(

n−4
)

, as n → ∞,

which, implies that much fewer terms of the series need be retained in order to give accurate

results in practice.

3.4 The coupled-mode system

If we assume that pI(r, z) is represented by the enhanced local-mode series (50), the functional

F
(

pI ,
{

CN
n

}

n∈N
,
{

CF
n

}

n∈N

)

, given by Eq. (25), is transformed to an equivalent one of the form

F = F
(

{Pn(r)}n≥0 ,
{

CN
n

}

n∈N
,
{

CF
n

}

n∈N

)

,

implying that the degrees of freedom of the system associated with the admissible pressure field

pI(r, z) in DI are the modal amplitudes Pn(r), rN < r < rF , n = 0, 1, . . .. Associated with the

vertical interfaces IN and IF are the degrees of freedom {Pn (rN )}n=1,2,... and {Pn (rF )}n=1,2,... of

the amplitude values at the left-hand endpoint r = rN , and at the right-hand endpoint r = rF ,

respectively, as well as the sets of coefficients
{

CN
n , n = 1, 2, . . .

}

and
{

CF
n , n = 1, 2, . . .

}

. For

the sloping interface mode amplitude P0(r) we impose the end conditions

P0 (rN ) = P0 (rF ) = 0, and P ′
0 (rN ) = P ′

0 (rF ) = 0, (51)

taking into account the smoothness of h(r).

Using a different (equivalent) set of degrees of freedom of the system in the variational princi-

ple leads to a different (equivalent) set of equations for the transmission problem PT

(

DI , k(r, z)
)

.

First, assuming that all the variations, except δpI in DI ∪ IB, are kept zero, we obtain

−
2
∑

ℓ=1

[

1

ρℓ

∫

DI
ℓ

(

∆pI + k2pI
)

δpI dV

]

+

∫

IB

[

∂pI

∂n

]

z=h(r)

δpI dS = 0, (52)

from which there formally follows that

∞
∑

m=0

∫ rF

rN

δPm(r) ·

(

∞
∑

n=0

amn(r)
d2Pn(r)

dr2
+ bmn(r)

dPn(r)

dr
+ cmn(r)Pn(r)

)

r dr = 0, (53)

where the coefficients amn(r), bmn(r), cmn(r) are given, for m, n ≥ 0, by

amn(r) = 〈Zn, Zm〉 , (54)

bmn(r) = (1/r) 〈Zn, Zm〉 + 2 〈∂Zn/∂r, Zm〉

+ h′(r)

(

1

ρ1
−

1

ρ2

)

Zn (h(r); r) Zm (h(r); r) , (55)

cmn(r) =

〈

1

r

∂Zn

∂r
+

∂2Zn

∂r2
+

∂2Zn

∂z2
+ k2Zn, Zm

〉

− δ0n Zm(h(r); r)

+ h′(r)

(

1

ρ1

∂Zn (h(r)−; 0)

∂r
−

1

ρ2

∂Zn (h(r)+; r)

∂r

)

Zm (h(r); r) , (56)
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where by 〈·, ·〉 we denote the inner product

〈f, g〉 =
1

ρ1

∫ h

0
f(z) g(z) dz +

1

ρ2

∫ H

h
f(z) g(z) dz, (57)

with respect to which the set {Zn}n≥1 is orthonormal. Since δPm(r), m = 0, 1, 2, 3, . . ., are

assumed arbitrary, independent variations, Eq. (53) is equivalent to the following infinite system

of second order ordinary differential equations:

∞
∑

n=0

amn(r)
d2Pn(r)

dr2
+bmn(r)

dPn(r)

dr
+cmn(r)Pn(r) = 0, rN < r < rF , m = 0, 1, 2, . . . , (58)

which will be called the consistent coupled-mode system of horizontal equations.

The boundary conditions for this system may be derived again using the variational equation

(27) and taking appropriate variations. The resulting equations are equivalent to (23) and (24).

First, in view of the series representation (9) of pN , and taking into account (50), we may rewrite

the boundary conditions (23) in the form

Pn (rN ) = CN
n J0

(

kN
n rN

)

+
i

4ρ1
ZN

n (z0) H
(1)
0

(

kN
n rN

)

, n = 1, 2, 3, . . . , (59)

P ′
n (rN ) = −

i

4ρ1
kN

n ZN
n (z0) H

(1)
1

(

kN
n rN

)

− CN
n kN

n J1

(

kN
n rN

)

, n = 1, 2, 3, . . . . (60)

By following the same procedure, we may derive from (23) a similar set of boundary conditions

at the right-hand endpoint r = rF

Pn (rF ) − CF
n H

(1)
0

(

kF
n rF

)

= 0, n = 1, 2, 3, . . . , (61)

P ′
n (rF ) + kF

n H
(1)
1

(

kF
n rF

)

CF
n = 0, n = 1, 2, 3, . . . . (62)

Recapitulating the above results, we see that the solution p of the transmission problem

PT

(

DI , k(r, z)
)

is represented by the series (50), where the amplitudes Pn, n ≥ 0 satisfy the

infinite system of o.d.e’s (58) in rN < r < rF , with coefficients given by the relations (54)–(56).

This system is supplemented by the boundary conditions

P0 (rN ) = P0 (rF ) = 0, (63)

P ′
0 (rN ) = P ′

0 (rF ) = 0, (64)

P ′
n (rN ) + AnPn (rN ) = Bn, n = 1, 2, 3, . . . (65)

P ′
n (rF ) + DnP ′

n (rF ) = 0, n = 1, 2, 3, . . . , (66)

where the coefficients An, Bn, Dn are given, for n = 1, 2, 3, . . ., by the relations

An =
kN

n J1

(

kN
n rN

)

J0 (kN
n rN )

, (67)

Bn =
−ZN

n (z0)

2πρ1rNJ0 (kN
n rN )

, (68)

Dn =
kF

n H
(1)
1

(

kF
n rF

)

H
(1)
0 (kF

n rF )
. (69)
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The coefficients CN
n , CF

n of the near and far-field expansion are then given by

CN
n =

[

Pn (rN ) −
i

4
ZN

n (z0) H
(1)
0

(

kN
n rN

)

]

/J0

(

kN
n rN

)

, n = 1, 2, 3, . . . , (70)

CF
n = Pn (rF ) /H

(1)
0

(

kF
n rF

)

, n = 1, 2, 3, . . . . (71)

Remarks:

1. Despite of the coupling between the differential equations (58), the boundary conditions

(63)–(66) are uncoupled.

2. Under the smoothness assumption for the depth function h(r), all the coefficients amn(r),

bmn(r), cmn(r) of the system (58) are continuous functions of r and can be calculated in

terms of Z0(z; r) and {Zn(z; r)}n∈N
.

3. Discontinuities of h(r), h′(r), and h′′(r) can also be treated by introducing an appropriate

domain decomposition with matching boundaries/interfaces at the points of discontinu-

ities.

3.5 Implementation of CCMM

The derivation of the Consistent-Couple Mode Method (CCMM) is based on truncating the

local-mode series (50) to include only a finite number of terms (modes), namely the sloping-

interface mode, the propagating modes and a number of evanescent modes. We write then for

p = pI :

p(r, z) =
M
∑

n=0

Pn(r)Zn(z; r). (72)

The infinite system of o.d.e.’s (58) becomes accordingly, a (M +1)× (M +1) second-order o.d.e.

system. This system is discretized using centered differences to approximate the derivatives of

the functions Pn(r), n = 0, 1, 2, . . . , M . Discrete boundary conditions are also obtained by using

appropriate differences to approximate derivatives in (63)–(66). The resulting discrete scheme

is formally of second order in the horizontal direction.

Computing the coefficients amn, bmn, cmn of the system requires the evaluation of the local

eigenfunctions Zn(z; r), n ≥ 1, and their derivatives. In the general case, the latter would be ob-

tained by e.g. solving the depth eigenvalue problem (29)–(33) by a second-order finite difference

scheme, as described in Jensen et al., [2]. In the simple case of our numerical experiments where

c is piecewise constant, the vertical eigenfunctions are obtained analytically by the formulas

(16)–(17) for h1 = h(r), h2 = H − h(r).

On the basis of the above considerations, we see that the coupled mode system of diffe-

rential equations is finally reduced to a linear algebraic system. The coefficient matrix of the

system is block structured (each block consisting of a tridiagonal matrix), and has a total size

Nd = (M + 1)(Ns + 1), where Ns is the number of segments in which the interval [rN , rF ] is

subdivided. The forcing appears only at the left endpoint r = rN ; see Eq. (65). The linear

system is solved by Gauss elimination using the built-in appropriate MATLAB function.

13



4 The Finite Element Method

We consider the homogeneous Helmholtz equation, i.e. (2) with zero right-hand side, on the

domain Ω = Ω1 ∪ Ω2 = {(r, z) : R1 ≤ r ≤ R2, 0 ≤ z ≤ H}, where 0 < R1 ≤ rN , R2 ≥ rF , and

Ω1, Ω2 represent the water and sediment layers, respectively. The equation is supplemented by

the boundary conditions (3), (4), and the interface conditions (5), (6), while at the left-hand

boundary r = R1 we assume that

p(R1, z) = g(z), 0 ≤ z ≤ H, (73)

where g is a known complex-valued function of z, given e.g. by the coupled mode program. At

the right-hand (outflow) boundary r = R2 we pose the exact, nonlocal, nonreflecting boundary

condition
∂p

∂r
= Tp, r = R2, 0 ≤ z ≤ H,

where T is the integral operator associated with the Dirichlet-to-Neumann (DtN) map of the

exterior wave field evaluated at r = R2, [15, 16, 17].

In order to construct T we use the far-field representation (10)

pF (r, z) =
∞
∑

n=1

CF
n ZF

n (z)H
(1)
0

(

kF
n r
)

, (r, z) ∈ DF ,

where H
(1)
0 is the Hankel function of the first kind and zero order and (kF

n )2, ZF
n are the

eigenvalues and eigenfunctions, respectively, of the two-point depth eigenvalue problem (11)–

(15) with ∗ = F . The eigenfunctions ZF
n are assumed to be orthonormal with respect to the

weighted L2–inner product

(v, w)ρ :=

∫ hF

0
vw dz + ρ

∫ H

hF

vw dz, ρ =
ρ1

ρ2
, (74)

where an overbar denotes complex conjugation.

Then, the DtN map of the acoustic field in DF , evaluated on {r = R2, 0 ≤ z ≤ H} is given

by

∂p(R2, z)

∂r
= Tp(z) :=

∞
∑

n=0

cn(p)ZF
n (z), (75)

where

cn(p) = kF
n

σ′
n

σn

(

p(R2, ·), Z
F
n

)

ρ
, σ′

n =
dH

(1)
0

dr

(

kF
n R2

)

, σn = H
(1)
0

(

kF
n R2

)

.

Now, let us denote Γ1 := {(r, z) : R1 ≤ r ≤ R2, z = 0}, Γ2 := {(r, z) : r = R1, 0 ≤ z ≤ H},

Γ3 := {(r, z) : R1 ≤ r ≤ R2, z = H}, Γ4 := {(r, z) : r = R2, 0 ≤ z ≤ H}. Let, also,
0

H (Ω, S) be the space of complex-valued functions u, defined on Ω, such that
∫

Ω1
|u|2r drdz +

ρ
∫

Ω2
|u|2r drdz < ∞ and

∫

Ω1
(|ur|

2 + |uz|
2)r drdz +ρ

∫

Ω2
(|ur|

2 + |uz|
2)r drdz < ∞, and vanishing

on a subset S of ∂Ω. Then, the weak formulation of the above-mentioned boundary-value

problem is the following: Seek p ∈
0

H (Ω, Γ1) satisfying p = g on Γ2 and

−(∇p,∇v)L2

1/2,ρ
(Ω) + (k2p, v)L2

1/2,ρ
(Ω) + (Tp, v)L2

1/2,ρ
(Γ4) = 0, ∀ v ∈

0

H (Ω, Γ1 ∪ Γ2), (76)
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where the operator T is defined by (75), ∇ = ( ∂
∂r , ∂

∂z ), and

(u, v)L2

1/2,ρ
(Ω) :=

∫

Ω1

uv rdrdz + ρ

∫

Ω2

uv rdrdz,

(u, v)L2

1/2,ρ
(Γ4) :=

∫ hF

0
uv R2dz + ρ

∫ H

hF

uv R2dz.

We shall assume that this boundary value problem has a unique solution.

4.1 The finite element discretization

The boundary-value problem given by (73), (76) is discretized by the standard Galerkin/finite

element method with continuous in Ω, piecewise linear functions defined on a triangulation Th

of Ω with triangles of maximum sidelength h and nodes on the interface IB. For simplicity,

we assume that the interface consists of straight line segments; thus Ω1 and Ω2 are polygonal

domains. We define the finite element spaces

Sh = {φ : φ ∈ C(Ω), φ = 0 on Γ1, φ |τ∈ P1 ∀ τ ∈ Th},

S0
h = {φ : φ ∈ C(Ω), φ = 0 on Γ1 ∪ Γ2, φ |τ∈ P1 ∀ τ ∈ Th}.

Then Sh and S0
h are finite dimensional subspaces of

0

H (Ω, Γ1) and
0

H (Ω, Γ1 ∪ Γ4), respectively,

and the discrete problem is formulated as follows: seek ph ∈ Sh, such that ph |Γ1
= Πhg |Γ1

, and

for every φ ∈ S0
h,

−(∇ph,∇φ)L2

1/2,ρ
(Ω) + (k2ph, φ)L2

1/2,ρ
(Ω) + (Thph, φ)L2

1/2,ρ
(Γ4) = 0. (77)

Here Πhg is the piecewise linear interpolant of g on the grid induced by Th on Γ2, and Th is a

discrete approximation of T evaluated as a finite sum of all propagating and the most significant

evanescent modes.

The error estimate for this discretization, proved by Goldstein, [16], in the case of homo-

geneous single-layer problems in Cartesian coordinates with a homogeneous Dirichlet boundary

condition on Γ3, was extended in [18], to the case of cylindrical coordinates for axisymmetric

problems. If T (p) is defined by (75), it is shown that the L2 norm of the error p − ph is of

O(h2). If the series in the right-hand side of (75) is truncated, so that the sum extends over all

the propagating and sufficiently many of the evanescent modes, it may be shown that the H1

norm of p − ph is of O(h) plus a term of O(exp[−1
2 |k

F
J |(R2 − rF )]), where J is the order of the

first evanescent term that is ignored. It is expected that a similar theory holds for the two-layer

problem for solutions p that are smooth in each layer and satisfy the transmission conditions

(5) and (6).

4.2 Implementation issues

The finite element method outlined above has been implemented in the Fortran code FENL; see

[14] for a detailed description (cf. also http://www.hlsresearch.com/oalib/Other/fenl and the

fenl.html file in the same site). Here we will just describe in brief the main ingredients of FENL.
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1. To triangulate the domain Ω we use mesh generation techniques from the MODULEF

library, [26], especially the modules APNOPO and TRIGEO. The generated mesh for

range-varying interface topography is non-uniform. Hence, it is not possible to identify

uniquely the number of meshpoints per wavelength, a parameter of practical interest in

numerical simulations of wave propagation problems. Instead, we define an average mesh-

length parameter h̄i :=
√

2|Ωi|/Ni, i = 1 or 2, where |Ωi| denotes the area of Ωi, and

Ni the number of triangles in Ωi. So, the number ξi = ci/(fh̄i), measures the number of

(average size) meshlengths contained in a wavelength in the water (i = 1) or the sediment

(i = 2), in the case of constant sound speeds ci in the two media.

2. A subroutine is called which reads the MODULEF data structure and produces the infor-

mation required for the assembly of the finite element matrices.

3. The next step is the numerical solution of the eigenvalue problem (11)–(15) with the

standard Galerkin/finite element method with continuous, piecewise linear functions on

the partition induced on [0, H] by the triangulation Th. To solve it, we use routines from

EISPACK.

4. We continue with the assembly of the stifness matrix S, the mass matrix Q, and the

associated with the nonlocal condition on Γ4 matrix B, with elements, respectively,

Sij = (∇φj ,∇φi)L2

1/2,ρ
(Ω), Qij = (k2φj , φi)L2

1/2,ρ
(Ω), Bij = (Thφj , φi)L2

1/2,ρ
(Γ4),

where φi, i = 1, . . . , Nh are the basis functions of the finite element space. S and Q are

real, symmetric, sparse matrices, while B is complex symmetric.

5. The resulting linear system is large, sparse, indefinite and complex symmetric, and is

solved with methods from the QMRPACK software package, [19]. QMPRPACK contains

implementations of various Quasi-Minimal Residual (QMR) iterative algorithms. In the

present work we have mainly used the double precision complex version of CPL (QMR

based on coupled two-term look-ahead recurrences), combined with the two-sided SSOR

preconditioner. A detailed experimental study of the influence of the various parameters

of this class of iterative linear system solvers on the accuracy of the overall numerical

method for underwater acoustics problems, such as the ones considered here, is contained

in [18]. (See also [27]). Since most of the computational effort of the finite element method

is devoted in solving the linear system, we report in the Appendix for each test problem of

Section 5, the number of iterations required for convergence and the attendant CPU time.

6. Finally, to produce one- or two-dimensional transmission loss graphs we used MATLAB’s

PDE Toolbox, with the aid of a routine which exports the data (triangulation information

and solution at the nodes) from FENL in the appropriate format needed by the graphics

module.
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5 Numerical Experiments

In this section we shall present the outcome of the numerical experiments that we performed

with the aim of comparing FENL, CCMM and COUPLE in stratified environments with variable

interface. (Extensive computations in the case of environments with a flat interface, have shown

that the three codes provide results in perfect agreement with the analytical solution.) In this

paper we shall confine ourselves to two problems, corresponding to interfaces that are shaped

in the r,z plane like an underwater hill and an underwater trench with steep bathymetry and

defined, respectively, by

h(r) =

{

50 − 25 cos 2π(r−500)
400 , for 300 < r < 700,

75 , elsewhere,

and

h(r) =

{

65 + 25 cos 2π(r−500)
400 , for 300 < r < 700,

40 , elsewhere,

where all distances are in meters. In all cases the density and sound speed of the seawater are

taken constant and equal to ρ1 = 1.0 g/cm3, c1 = 1500 m/sec, respectively; the density and

sound speed of the sediment are ρ2 = 1.5 g/cm3 and c2 = 1700 m/sec. The harmonic source

is located at z = 25 m and the hard horizontal bottom was placed at H = 100 m. As a near

field value on Γ2 for the finite element method we took Πhg, defined as the piecewise linear

interpolant of the acoustic field produced by CCMM at r = R1 on the grid induced by Th on

Γ2. The nonlocal outflow condition for FENL was posed at r = R2. In all cases CCMM used

rN = 280 m and rF = 720 m. As linear system solver in FENL we selected CPL of QMRPACK,

combined with the two-sided SSOR preconditioner with parameter ω = 1.2. In all examples,

we also compared our results with those obtained by COUPLE. (We have simulated the rigid

bottom in COUPLE assuming that the semi-infinite layer used by COUPLE has very large

values of density and sound speed.) We ran COUPLE, CCMM and FENL with parameters that

are listed, for each test case, in the Appendix. In each case, the number of elements in FENL

and the number of range steps in CCMM and COUPLE were taken sufficiently large so as to

ensure convergent numerical results. In CCMM we chose M (cf. Eq. (72)) equal to 15, in order

to guarantee that the number of evanescent modes retained in the representation of the field

was greater than the number of propagating modes in all runs.

Test case 1: Hill, f = 25 Hz.

As a first example, we consider the case of the underwater hill for a frequency of f=25 Hz. In

Figures 2 and 3 we present one- and two-dimensional transmission loss plots obtained by the

CCMM, FENL and COUPLE codes.

In Figure 2 we show superimposed one-dimensional plots of transmission loss vs. range

(at receiver depths RD=25, 50, 70 and 90 m) obtained by the three codes. The results are in

excellent agreement. Table 1 contains some associated quantitative information. For a given pair
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of codes, labeled, say, (1) and (2), and at each receiver depth zrd we computed a ‘normalized

ℓ2 field discrepancy’, a measure of the difference between the two solutions p(1)(r, zrd) and

p(2)(r, zrd), at the range points Q ∈ Q, where Q is the set of the (equidistant) range nodes used

by COUPLE in the interval [R1, R2]. (The values of R1 and R2 for each test case are listed in

Table 7 in the Appendix.) The field values of FENL and CCMM were computed at the points

Q by linear interpolation. The normalized ℓ2 field discrepancy was defined as the quantity





1

J

∑

Q∈Q

∣

∣p(1)(Q, zrd) − p(2)(Q, zrd)
∣

∣

2

∑

Q∈Q

∣

∣p(1)(Q, zrd)
∣

∣

2





1/2

,

where (2) denotes the code listed second in each indicated pair in the table and J is the number

of interior sampling points Q in the interval [R1, R2].

In Figure 3 we present two-dimensional transmission loss plots obtained by the three codes;

the one-dimensional plots of Figure 2 were extracted from the runs that gave these 2D plots. �
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Figure 2: Underwater hill. Comparison between CCMM, FENL and COUPLE, f=25 Hz,

R1=50 m.
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Depth (m) CCMM vs. FENL COUPLE vs. CCMM COUPLE vs. FENL

25 7.8372E-04 2.6345E-04 8.5497E-04

50 7.9441E-04 2.2888E-04 8.0214E-04

70 6.4811E-04 2.7957E-04 6.0330E-04

90 7.8318E-04 2.4869E-04 8.0283E-04

Table 1: Normalized ℓ2 field discrepancy, underwater hill, f=25 Hz, R1=50 m.
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Figure 3: Underwater hill. Transmission loss. CCMM, FENL and COUPLE, f=25 Hz.

Test case 2: Trench, f = 25 Hz.

As a second example, we consider the case of the underwater trench for the frequency f=25 Hz.

In Figure 4 we present two-dimensional transmission loss plots obtained by the three codes. The

results again agree very well. In Figure 5 we plot superpositions of the transmission loss curves

obtained by the three codes at receiver depths RD=25, 50, 70 and 90 m. Table 2 contains the

associated normalized ℓ2 field discrepancies between the pairs of methods, which are again of

O(10−4) like their counterparts of Table 1. �
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Figure 4: Underwater trench. Transmission loss. CCMM, FENL and COUPLE, f=25 Hz.

Depth (m) CCMM vs. FENL COUPLE vs. CCMM COUPLE vs. FENL

25 6.7558E-04 6.1783E-04 4.5723E-04

50 5.3986E-04 4.2084E-04 5.6770E-04

70 4.3455E-04 3.7465E-04 5.1858E-04

90 4.4601E-04 2.8800E-04 5.4928E-04

Table 2: Normalized ℓ2 field discrepancy, underwater trench, f=25 Hz, R1=50 m.
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Figure 5: Underwater trench. Comparison between CCMM, FENL and COUPLE, f=25 Hz,

R1=50 m.

As was mentioned in the Introduction, we observed that there are values of the source

frequency for which one eigenvalue k2
n(r) of the local vertical problem (29)-(33) remained close

to zero for all r and changed sign, usually several times, in the vicinity of the hill or the trench.

For example, for the hill case, in Figure 6 we have plotted as functions of r, for the three source

frequencies f=25, 19.85, 27.75 Hz the three eigenvalues of the local vertical problem which are

closer to zero, for r ∈ [300, 700], i.e. when r ranges over the support of the hill (all distances

in meters). The graphs are of course symmetric about r = 500, where the hill has its peak.

(The eigenvalues were computed by considering the (interface) depth eigenvalue problem at

r = 300 + i∆r, i = 0, 1, 2, . . . , 100, ∆r = 4, discretizing it by a finite element method with

a meshlength equal to ∆z = 0.5 in the depth variable, and solving the associated indefinite

eigenvalue problem with EISPACK using the basic routine IMTQL2 for symmetric tridiagonal

matrices.) When f=25 Hz the first three eigenvalues stay positive and the fourth is negative

uniformly for r ∈ [300, 700]. In the case of the problematic frequency f=27.75 Hz the fourth

eigenvalue changes sign six times in the interval, while for f=19.85 Hz the third eigenvalue after

becoming negative for r ≃ 380, changes sign four times in the interval [450,550], where it is less

than 7.E − 5 in magnitude.
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Figure 6: Some eigenvalues of the local, vertical problem as functions of r. Underwater hill, f=

25.00 Hz, 19.85 Hz and 27.75 Hz

Let us first identify the first few ‘critical’ (multiple cut-off) frequencies for which this phe-

nomenon occurs. There are actually intervals of critical frequencies, given, in the cases of the

underwater hill and trench, in Table 3. The table indicates the mode number, i.e. the index

n, of the problematic eigenvalue k2
n(r) which repeatedly crosses the zero line in the vicinity of

the interface inhomogeneity. The endpoints of these intervals correspond to limiting profiles of

Mode No. 3 4 5 6

Hill Interval (Hz) 18.81 – 20.69 26.46 – 29.19 34.87 – 37.69 42.32 – 45.20

Trench Interval (Hz) 18.81 – 20.69 26.31 – 28.22 33.81 – 36.68 41.31 – 44.89

Table 3: Intervals of critical frequencies, underwater hill and trench.

the corresponding eigenvalue, i.e. profiles that are just tangent, from below or above, to the

zero line. For example, Figure 7 shows the graphs of the third eigenvalue of the hill problem at

f=18.81 Hz and at f=20.69 Hz. For frequency values in the interval (18.81,20.69) the graph of

the third eigenvalue will cross, therefore, the λ = 0 line at at least two points in the neighborhood
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of the hill. The frequencies corresponding to the limiting profiles are found by solving Eq. (16)
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Figure 7: Underwater hill. Plots of 3d eigenvalue as function of r at the two endpoints of the

first critical frequency interval.

for the unknown f = ω/(2π), using a standard root finder and putting kn = 0. For example, in

the case of the hill problem and n = 3, finite element eigenvalue calculations (such as the ones

used to produce the profiles of Figure 6) yield the information that near the first set of critical

frequencies, the minimum of k2
3(r) occurs at rmin

∼= 412 m, corresponding to an interface depth

h(rmin) = 45.315 m, while the maximum occurs at rmax
∼= 344 m, where h(rmax) = 69.263 m.

Using h∗ = h(rmax) in (16) yields the lower critical frequency endpoint f ∼= 18.81 Hz, while if

h∗ = h(rmin) the root of (16) is f ∼= 20.69 Hz, the upper limit of the critical frequency interval

for n = 3.

We now examine in detail the results that the three codes gave at some critical frequencies.

Test case 3: Hill, f = 19.85 Hz.

In this case, we obtained the transmission loss vs. range curves of Figure 8, showing super-

imposed plots derived from output from the three codes CCMM, FENL and COUPLE at four

receiver depths, RD = 25, 50, 70 and 90 meters. The agreement is quite good as it is evident

in the graphs, and is quantified by means of the associated ℓ2 field discrepancy data of Table

4. Note that its entries have larger magnitudes compared with their counterparts of Table 1.

For example, the discrepancies between the CCMM and COUPLE results have increased by a

factor of about five. The differences between the CCMM or COUPLE and FENL codes have

also increased. �
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Figure 8: Underwater hill. Comparison between CCMM, FENL and COUPLE, f=19.85 Hz,

R1=50 m.

Depth (m) CCMM vs. FENL CCMM vs. COUPLE COUPLE vs. FENL

25 2.8871E-03 1.2651E-03 3.0139E-03

50 3.2783E-03 1.7551E-03 3.7983E-03

70 2.1468E-03 1.3498E-03 2.5490E-03

90 3.0089E-03 1.8694E-03 3.4218E-03

Table 4: Normalized ℓ2 field discrepancy, underwater hill, f=19.85 Hz, R1=50 m.

Test case 4: Hill, f = 27.75 Hz.

Figure 9 presents superimposed transmission loss plots obtained by the three codes. The results

agree quite well, but once more, as it is verified by examining the entries of the associated Table

5, the discrepancies are larger compared with those of Table 1. �

We turn now to the problem of the underwater trench. The general picture that emerges is

similar to that of the underwater hill. As it has been seen already, the value f=25 Hz (Test Case
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Figure 9: Underwater hill. Comparison between CCMM, FENL and COUPLE, f=27.75 Hz,

R1=50 m.

2) was a frequency for which we observed good agreement between the three codes. We next

examine the case of the frequency 19.65 Hz, a value in the first interval of critical frequencies

for the trench.

Test case 5: Trench, f = 19.65 Hz.

In this case, Figure 10 shows the transmission loss vs. range curves that we have obtained

from the three codes. The agreement is now slightly worse and is quantified by the data of

Table 6 presenting the associated normalized ℓ2 field discrepancies; its entries have increased in

comparison with their counterparts of Table 2. Figure 11 is the analogous of Figure 6 for the

trench example at f=25 and 19.65 Hz. �

We close this section with some remarks regarding the near-field boundary condition (on

Γ2, for r = R1) needed by the finite element code FENL. This boundary condition is furnished

(unless otherwise specified) by the CCMM solution at r = R1; R1 was always taken greater or

equal to 50 m so as not to be too close to the source. We observed that varying R1 gave, in

general, different discrepancies between FENL and the coupled mode codes. Figure 12 sum-

marizes the FENL-CCMM comparison results in the hill case. It shows the normalized l2 field
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Depth (m) CCMM vs. FENL COUPLE vs. CCMM COUPLE vs. FENL

25 9.2522E-04 3.9439E-04 9.5602E-04

50 1.6352E-03 5.5933E-04 1.6915E-03

70 2.4457E-03 6.7366E-04 2.5661E-03

90 1.2330E-03 4.6935E-04 1.3481E-03

Table 5: Normalized ℓ2 field discrepancy, underwater hill, f=27.75 Hz, R1=50 m.

Depth (m) CCMM vs. FENL COUPLE vs. CCMM COUPLE vs. FENL

25 8.9033E-03 1.7573E-03 7.9856E-03

50 7.9446E-03 1.2474E-03 7.5068E-03

70 6.4461E-03 1.3418E-03 5.7600E-03

90 8.8960E-03 1.4641E-03 8.1229E-03

Table 6: Normalized ℓ2 field discrepancy, underwater trench, f=19.65 Hz, R1=50 m.

discrepancy at four receiver depths for various source frequencies as a function of six positions

R1, the smaller of which was 50 m and the larger 280 m. In the case (a) of the ‘regular’ fre-

quency f=25 Hz the results are insensitive to R1. But at critical frequencies such as 19.85 Hz,

(b), and 27.75 Hz, (c), we observe stronger dependence of the discrepancies on R1. The dis-

crepancies are apparently caused by the quality of the modal boundary data or, perhaps, by

the possible inappropriateness of the Dirichlet data at these range values that leads to some

type of resonance between the near-field boundary data and the inhomogeneity. They are not

due, for example, to some inherent FENL instability with respect to variations in R1: When

we took near-field data from CCMM at R1=50 m, computed the solution by FENL at r=100,

150, 200, 250 and 280 m and used these values as boundary conditions for FENL at these R1’s,

we observed (Figure 12(d)) discrepancies that are independent of R1 and much smaller than

those of case (c). We observed a similar R1-dependence when we took modal data for FENL

from COUPLE. However, the discrepancies depend on the particular modal starter used. For

example, for the frequency f= 19.85 Hz, in Figure 13(a) we show the resulting transmission

loss vs. range curves for CCMM and FENL at receiver depth 90 m, when modal data from

CCMM was used as boundary condition for FENL at R1=150 m. (From Figure 12(b) we see

that this is the worst-case scenario with respect to the choice of R1 and receiver depth at this

critical frequency.) The associated normalized ℓ2 field discrepancy is 1.41E-2. When we used

the COUPLE field values at R1=150 m as boundary data for FENL, we obtained much better

agreement, cf. Figure 13(b). The ℓ2 discrepancy is now 2.09E-3.

Figure 14 shows analogous graphs of the dependence on R1 of the discrepancy between the

FENL and CCMM fields when the FENL boundary condition at R1 is furnished by CCMM, in

the case of a regular (f=25 Hz) and a critical (f=19.65 Hz) frequency for the trench problem.
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Figure 10: Underwater trench. Comparison between CCMM, FENL and COUPLE, f=19.65 Hz,

R1=50 m.
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Figure 11: Some eigenvalues of the vertical problem as functions of r. Underwater trench, f=

25.00 Hz, 19.65 Hz.

6 Concluding Remarks

In this paper we solved a standard underwater acoustic propagation and scattering problem in

two cylindrically symmetric, range-dependent, shallow-water ideal environments consisting of

the water and one sediment layer separated by a hill– and a trench–like interface and overlying

a rigid bottom at finite depth. We used the coupled mode method CCMM and the finite

element method FENL, and compared their results for various relatively low values of the source

frequency, in order to keep the number of elements of the finite element scheme at reasonable

levels as required by our version of Fortran implementation of MODULEF. In all cases we also

compared the results of these two codes with those of COUPLE.

The Consistent Coupled Mode Method (CCMM) uses an enhanced local-mode represen-

tation of the pressure field in an intermediate domain that contains the variable topography

part of the water-sediment interface. The modal expansion includes an additional local field

element, the ‘sloping interface mode’, whose range-dependent coefficient provides an additional

degree of freedom, that is used to correct the inconsistency of the local modes, which satisfy

the derivative jump condition not in the normal direction to the interface as dictated by the

problem, but only in the vertical direction. This, in turn, significantly accelerates the conver-

gence of the modal series. The intermediate field is then matched with the standard near-field

and far-field (outgoing) series solutions in the respective, homogeneous parts of the waveguide.

The finite element method FENL solves the Helmholtz equation in a computational domain that

includes the variable topography part of the interface and is bounded by inner and outer vertical

cylindrical boundary surfaces of radii r = R1 and r = R2, respectively. FENL employs continu-

ous piecewise linear functions defined on a triangulation of the computational domain, and the

standard Galerkin approximation coupled with a nonlocal, nonreflecting DtN-type boundary

condition at the outer boundary r = R2. At the inner (inflow) boundary r = R1 FENL uses as

a Dirichlet boundary condition the value of the pressure field that is computed by modal data
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Figure 12: Underwater hill. Influence of the position R1 of the FENL near-field boundary on

the normalized ℓ2 discrepancy between FENL and CCMM, f=25 Hz, 19.85 Hz, and 27.75 Hz,

RD = 25, 50, 70, and 90 m.

(usually provided by CCMM) at r = R1 for the particular problem. Thus, the results of a FENL

computation depend, through the boundary condition at the inner boundary, on the results of

the corresponding modal calculation. (It is possible to make FENL self-contained by coupling

the main solver with a nonhomogeneous DtN–type condition at the inner boundary using the

near field expansion of the solution at r = R1; this will be pursued in the future.)

We compared the results of the three codes in some detail, providing in each test case

superimposed one-dimensional transmission loss plots at various depths, as well as quantitative

evidence of the ℓ2 norm of the discrepancies of the fields computed by the three pairs of codes.

Thus, our data might prove useful in comparing the results of other codes on these two test

problems. In general, the results of the three codes were in very good agreement. Larger

discrepancies were observed for source frequencies that were such that one eigenvalue k2
n(r) of

the local, vertical problem (29)–(33) remained small in magnitude and changed sign, usually

several times, in the neighborhood of the hill or trench. Examples of such ‘critical’ frequencies

and descriptions of the associated differences in the results of the codes may be found in Section

5 (Test Cases 3–5). In all cases the dicrepancies were small in absolute terms, with the exception

of cases corresponding to ‘resonant’ values of R1 as discussed in the end of Section 5.
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Figure 13: Underwater hill. Influence of (a) CCMM and (b) COUPLE data at R1=150 m,

f=19.85 Hz.
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Figure 14: Underwater trench. Influence of the position R1 of the near-field boundary on the

normalized ℓ2 field discrepancy between FENL and CCMM, f=25 Hz and 19.65 Hz, RD = 25,

50, 70, and 90 m.

Coupled mode codes depend, of course, explicitly on computed local eigenfunctions and

eigenvalues of the depth problem. Evidence from our experiments (cf. Test Case 3 (Table 4),

Test Case 4 (Table 5) and Test Case 5 (Table 6)) shows that relatively larger discrepancies

between the CCMM and COUPLE results may be observed at critical frequencies in both the

hill and the trench examples. This may be due to some kind of mild numerical instability that

influences the accuracy of coupled mode schemes in the presence of such ‘blurred’ eigenvalues

in the course of computing the associated modal amplitude functions.

As pointed out in the Introduction, for a locally flat interface one may expect problems in

computing the modal amplitude functions Pn(r). In the case of COUPLE, which uses piecewise

constant approximations to the interface, kn is never actually zero because of a heuristic check of

the code that slightly modifies the interface depth near such ranges. More importantly, COUPLE

uses a halfspace bottom approximation which effectively pushes the eigenvalues that are close to

zero, into the complex plane. CCMM does not have such explicit perturbation mechanisms in

place; apparently, including the sloping interface mode amplitude P0(r) in the system of o.d.e’s
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(58), and truncating and discretizing this system by finite differences introduce some type of

regularization into the problem. We observed that the condition number of the matrix of the

linear system that is solved in CCMM (cf. end of Section 3.5) typically increases by a factor

of 10 near some critical frequencies. This increase is not large enough to cause serious loss of

accuracy.

The finite element method does not explicitly require computing the solution of the local

depth eigenvalue problem. (The FENL code includes, of course, such a computation but only

at the outflow boundary r = R2 for the implementation of the nonlocal, DtN type boundary

condition; however that eigenvalue problem involves only the eigenpairs
{

(

kF
n

)2
, ZF

n

}

of the far

field, which are independent of r.) However, as previously stated, in these numerical experiments

the boundary condition required by FENL at the inflow boundary is provided by the field value

at r = R1 that is computed by a coupled mode code. Thus, the accuracy of a FENL computation

is influenced by the accuracy of the analogous modal computation and, as seen in Section 5,

depends in general on the position of R1.
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456.

[13] M. J. Buckingham, Ocean-acoustic propagation models, J. Acoustique 3, 223–287 (1992).

[14] N. A. Kampanis, V. A. Dougalis, A finite element code for the numerical solution of the

Helmholtz equation in axially symmetric waveguides with interfaces, J. Comp. Acoustics

7, 83–110 (1999).

[15] G. J. Fix, S. P. Marin, Variational methods for underwater acoustic problems, J. Comp.

Physics 28, 253–270 (1978).

[16] C. I. Goldstein, A finite element method for solving Helmholtz type equations in wave-

guides and other unbounded domains, Math. Comp. 39, 309–324 (1982).

[17] J. B. Keller, D. Givoli, Exact nonreflecting boundary conditions, J. Comp. Physics 82,

172–192 (1989).

[18] D. A. Mitsoudis, Finite element methods for axisymmetric, indefinite boundary-value prob-

lems and applications in underwater acoustics (in Greek), Ph.D. Thesis, University of

Athens, Greece, 2003.

[19] R. W. Freund, N. M. Nachtigal, An implementation of the QMR method based on coupled

two–term recurrences, SIAM J. Sci. Comput. 15, 313–337 (1994).

[20] M. J. Buckingham, A. Tolstoy, An analytical solution for benchmark problem 1: The

“ideal” wedge, J. Acoust. Soc. Am. 88, 1511–1513 (1990).

32



[21] V. A. Dougalis, N. A. Kampanis, M. I. Taroudakis, “Comparison of finite element and

coupled mode solutions of the Helmholtz equation in underwater acoustics”, in Proc. 4th

European Conference in Underwater Acoustics, eds. A. Alippi and G. B. Cannelli, CNR-

IDAC, Rome 1998, Vol. II, pp. 649–654.

[22] M. I. Taroudakis, G. A. Athanassoulis, and J. P. Ioannidis, A variational principle for

underwater acoustic propagation in a three-dimensional ocean environment, J. Acoust.

Soc. Am. 88, 1515–1521 (1990).

[23] M. I. Taroudakis, G. A. Athanassoulis, and J. P. Ioannidis, A hybrid solution of the

Helmholtz equation in shallow water, based on a variational principle, in Acoustique Sous

Marine et Ultrasons, CNRS–LMA, Marseilles 1991, pp. 213–227.

[24] I. M. Gelfand and S. V. Fomin, Calculus of variations (Prentice Hall, 1962).

[25] K. Rectorys, Variational Methods in Mathematics. Science and Engineering, (D. Reidel,

1977).

[26] M. Bernadou, P. L. George, A. Hassim, P. Joly, P. Laug, A. Perronnet, E. Saltel, D. Steer,

G. Vanderborck and M. Vidrascu, MODULEF: A Modular Library of Finite Elements,

INRIA, 1988.

[27] D. A. Mitsoudis, N. A. Kampanis, V. A. Dougalis, “A finite element method for the

Helmholtz equation in axially symmetric problems of underwater acoustics: error estimates

and numerical experiments”, in Proc. 5th Hellenic-European Conference on Computer

Mathematics and its Applications (HERCMA 2001), E. A. Lipitakis ed., (Athens, Greece,

2001), pp. 530–533.

A Appendix

In Table 7 we list the parameters used in the FENL code in the various experiments of Section

5. (All distances in meters). For CCMM we used 441 (equidistant) nodes in range between

rN = 280 and rF = 720, and we chose M (cf. Eq. (72)) equal to 15, for all test cases. For

COUPLE we used NI=400 regions in range between r = 300 and r = 700, and 15 contributing

modes. In COUPLE, we simulated the hard bottom by a bottom layer of density 109 g/cm3 and

sound speed 109 m/sec. For FENL, R1 is the range value where the near-field boundary data

was evaluated, R2 is the range value where the DtN condition was posed, NEL is the number of

elements and NND is the number of nodes of the triangular mesh, ξi is an indicative parameter

measuring the number of average size meshlengths contained in a wavelength in the water (i = 1)

or the sediment (i = 2), for constant sound speeds c1 = 1500 m/sec and c2 = 1700 m/sec in

the two media. The parameter NIT is the number of iterations that the linear system solver

requires to converge and t is the linear system solve total CPU-time in seconds. (All the FENL
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runs were performed on a Pentium IV PC with a RAM of 1 GB running under Linux at 2 GHz.)

FENL

Cases R1 R2 NEL NND ξ1 ξ2 NIT t

TC1 Fig. 2,

Hill Fig. 3, 50 1000 53,142 27,087 32 36 1,045 66

25 Hz Tbl. 1

TC2 Fig. 4,

Trench Fig. 5, 50 1000 53,352 27,203 32 36 1,299 83

25 Hz Tbl. 2

TC3 Fig. 8,

Hill Tbl. 4 50 1000 53,142 27,087 40 45 1,014 64

19.85 Hz

TC4 Fig. 9,

Hill Tbl. 5 50 1000 53,142 27,087 29 32 1,415 89

27.75 Hz

TC5 Fig. 10,

Trench Tbl. 6 50 1000 53,352 27,203 40 46 1,200 77

19.65 Hz

Table 7: FENL run parameters for the numerical experiments of Section 5.
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