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Abstract

This work is devoted to the numerical solution of the Helmholtz equation with variable wavenum-
ber and including a point source in appropriately truncated infinite domains. Motivated by a two-
dimensional model, we formulate a simplified one dimensional model. We study its well posedness via
wavenumber explicit stability estimates and prove convergence of the finite element approximations.
As proof of concept, we present the outcome of some numerical experiments for various wavenumber
configurations. Our experiments indicate that the introduction of the artificial boundary near the
source and the associated boundary condition lead to an efficient model that accurately captures the
wave propagation features.
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1 Introduction

The Helmholtz equation is a mathematical model for time-harmonic wave propagation and scattering
problems and finds application in diverse fields like acoustics, electromagnetics, oceanography, and geo-
physics. Very often it is posed in infinite or very large (compared to the characteristic wavelength)
domains as, for example, in problems in underwater acoustics where the marine environment is modeled
as an infinite waveguide. The numerical solution of the Helmholtz equation in such domains remains a
very interesting and challenging task and an active area of extensive research. In fact, the resolution of
the Helmholtz equation in dimensions three for moderate to high wavenumbers and realistic geometries
and/or boundary conditions is a problem where current computational methods are not yet capable to
address efficiently.

In order to approximate the solution of the Helmholtz equation in an infinite domain with a direct nu-
merical method, the domain first has to be truncated in some way and, in turn, an equivalent problem
be posed in the resulting finite computational domain. A common approach for truncating an infinite
domain is to introduce an artificial boundary that surrounds the region of interest for the wave phenom-
ena that are studied, and derive appropriate absorbing boundary conditions (ABCs) to impose on this
artificial boundary. In the ideal case, these ABCs aim to allow waves to leave the computational domain,
as if they were propagating into an infinite one, without causing spurious reflections from the presence
of the artificial boundary. Several types of ABCs exist, including local and nonlocal ABCs (see, e.g., the
book by Givoli [12]) and perfectly matched layers (PML) [35, 21, 4]. Other numerical methods for these
kinds of problems that have been developed and widely used during the last four decades include the use
of absorbing layers, infinite elements, boundary integral methods, and various semi-analytical methods.
Similar challenges arise in the important case where a point source emanating waves is included in the
model. The treatment of artificial boundary conditions follows standard approaches, provided that the
point source remains within the computational domain, but then the numerical treatment of the problem
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with finite elements becomes cumbersome due to the presence of a distribution as a source. Our aim
is to systematically develop efficient finite element methods which simultaneously fulfill the following
objectives: (i) they are able to handle realistic scenarios, including geometries and boundary conditions,
(ii) point sources are included in the model, but lie outside the computational domain, and thus the
derived model includes their effect on the boundary rather than as a distribution appearing in the right
hand side of the principal part of the equation, and (iii) the resulting models are mathematically stable
with wavenumber explicit constants [27, 29, 28]. Several challenges arise from both computational and
analytical perspectives due to the mathematical structure of the problem. Notably, the model exhibits
distinct behaviours in the near-field and far-field, even in one dimension, placing it in the class of scat-
tering problems involving a non-compact perturbation of the boundary. The focus in this paper, is to
consider the spatially dependent, variable wavenumber case, and as a proof of concept, to analyse the
one-dimensional model problem, including finite element approximations.

Our model has interesting similarities, which will be further explored in a forthcoming work, with a
problem of great importance appearing in several applications and concerning the understanding of the
acoustic scattering effect of a non compact perturbation of the boundary of a flat two-dimensional waveg-
uide, resulting to a non-uniform waveguide with different constant widths at infinity. In such a model,
it is usually assumed that the acoustic field is generated by a harmonic point source located in a region
with constant width. It is known that while scattering by bounded obstacles can be treated essentially
by the same methods as the corresponding problem for the Schrödinger operator with short-range, even
of compact support, potential, scattering by non compact obstacles acquires remarkable similarities with
multi-particle quantum scattering, and different channels can be considered that correspond to different
exits of the obstacle at infinity [36].

A two-dimensional waveguide problem.

To fix ideas, we describe first a two-dimensional problem. Then, in the forthcoming sections we shall
study its simplified one-dimensional version. We consider the Green’s function for the Helmholtz equation
in a two-dimensional waveguide consisting of a single water layer overlying an acoustically-soft bottom
of variable topography. The upper boundary of the waveguide is assumed to be a horizontal pressure-
release surface. We introduce a Cartesian coordinate system (x, y), where the x-axis lies on the surface
and the y-axis (depth) is taken to be positive downward, see Figure 1. The acoustic field is generated by
a time-harmonic point source of frequency located at (xs, ys). We also assume that the inhomogeneities
of the medium and the variable bottom topography are confined in range within an interval [x1, x2].
Specifically, we assume that the bottom is the graph of a sufficiently smooth, positive function h, such
that h(x) = DN , for x ≤ x1 and h(x) = DF , for x ≤ x2, where xs < x1 < x2 and DN , DF are positive
constants.

x

y y = DF

y = DN

(xs, ys)

xN x1 xFx2

Γ1

Γ2

Γ3

Γ4

Figure 1: Schematic representation of the waveguide and basic notation.

In this model the acoustic field (usually acoustic pressure) satisfies the Helmholtz equation,[19]

−∆u(x, y)− k2u(x, y) = δ(x− xs)δ(y − ys), (1.1)

where δ denotes the Dirac distribution and the (real) wavenumber k is a sufficiently smooth function of
the form

k(x, y) =

 kN , for x ≤ x1,
kint(x, y), for x1 < x < x2,
kF , for x ≥ x2.

Moreover, we assume that k(x, y) is continuous and 0 < kmin < k(x, y) < kmax for all (x, y). Equa-
tion (1.1) is supplemented by homogeneous Dirichlet boundary conditions on the surface and on the
bottom and by appropriate radiation conditions stating that

u(x, y) is ‘outgoing’ as x→ ±∞.
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When one is interested in solving this problem computationally with a direct numerical method, the
original infinite domain has to be truncated. One way to achieve this is by introducing two artificial
boundaries at some appropriate values of x, near the source (at x = xN ∈ (xs, x1)) and far from the source
(at x = xF > x2), denoted by Γ4 and Γ2, respectively. On these artificial boundaries suitable nonlocal
conditions of DtN type may then be imposed, which are essentially derived from explicit solutions of the
associated PDE problem in the semi-infinite strips (x < x1 and x > x2). Moreover, Ω, Γ3 and Γ1 denote
the bounded part of the waveguide, of the surface and of the bottom, respectively, that are confined
between x = xN and x = xF . The construction of the DtN map at the boundaries x = xN , xF is an
involved procedure based on the analytical construction of the radiating wave fields in the half strips
x < xN , x < xF . For example, at the boundary x = xF , we get the condition

∂u

∂x
(xF , y) = T1u(y) + T2u(y),

where

T1u(y) := i

MF∑
n=1

√
k2F − µF

n uFn (xF )Y
F
n (y) and T2u(y) := −

∞∑
n=MF+1

√
µF
n − k2F uFn (xF )Y

F
n (y).

Here, MF is the finite number of propagating modes (waves oscillating at x = +∞, as it is dictated by
the radiation condition), and

µF
n =

(
nπ

DF

)2

, Y F
n =

√
2

DF
sin

nπy

DF
, n = 1, 2, . . . , uFm(xF ) :=

∫ DF

0

u(xF , y)Y
F
m (y) dy,

are the eigenvalues, resp. the orthonormal eigenfunctions (that form a complete orthonormal system in
L2(0, DF ) with respect to the standard inner product), and the corresponding Fourier coefficients of the
wave field u(x > xF , y), respectively. The DtN condition at the boundary x = xN has a similar form,
apart that it contains an extra term arising from the point source in x < xN .

It is important to emphasize here that the waveguide problem described above is quite different from, and
much more difficult, than the case of a locally perturbed waveguide, where DF = DN and k = const. for
x > xF and x < xN , and any perturbation either of the boundary (bottom) or/and of the wavenumber
is confined in the region xN < x < xF . In the latter case the radiation conditions at x = ±∞ are the
same, while in the former case, where DF ̸= DN or/and kF ̸= kN , they are different on the left and
the right. Therefore, when the perturbation of the waveguide is non local, we cannot exploit ideas and
techniques from the theory of smooth compact perturbations [31] and “black box” scattering [9]. In
order to understand the problem, it seems appropriate to look separately at the scattering mechanisms
arising from the perturbation of the boundary and from the perturbation of the wavenumber. In this
respect, we study in this paper the FEM solution of the simplified one dimensional problem of smooth
non local perturbation of the homogeneous medium.

Literature review.

Finite element methods coupled with ABCs in unbounded waveguides can be traced back to the work
of Fix and Marin [10], where they study the Helmholtz equation in a cylindrical semi-infinite waveguide
and propose a finite element method coupled with a “generalized radiation condition” imposed on an
artificial boundary. They used separation of variables to derive their outflow boundary condition which
is now known as the Dirichlet-to-Neumann (DtN) boundary condition [20, 12]. Goldstein [13] intro-
duced a finite element method for solving the Helmholtz equation in a perturbed semi-infinite cylindrical
waveguide with a nonlocal ABC of the form ∂u/∂n = T (u), where n denotes the outward unit normal
on the artificial boundary and T is the DtN map in the form of an eigenfunction series, He rigorously
demonstrated the accuracy of the method and, moreover, he examined the effect on error estimates of
truncating the infinite series appearing in the definition of T . Bayliss et al [3] considered the Helmholtz
equation in a two-dimensional Cartesian waveguide with a suitable radiation condition at infinity. Their
numerical experiments indicated that for a second-order method the error in the L2 norm grows with
the wavenumber k, when kh is kept constant, whereas it remains bounded for k3h2 = const., where h is
the mesh size. Bendali and Guillaume [5] introduced quasi-local non-reflecting boundary conditions for
the Helmholtz equation in a semi-infinite waveguide that were perfectly transparent for all propagating
modes. Athanassoulis et al. [1] considered an underwater sound propagation problem in a two-layered
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marine waveguide with (locally) range-dependent interface and locally variable sound speed, and com-
pared the results of a coupled mode method with those of a finite element method in range-dependent
test problems.

Frequency explicit stability and finite element error bounds are important, since may highlight subtle
correlations between the wave number and the mesh size. Such detailed analysis was initiated by I.
Babuška and his collaborators on mid 90’s, for detailed experimental and theoretical studies of these
works we refer to the book of Ihlenburg [17] and the references therein. The stability analysis based on
energy methods via nonstandard test functions was considered in the works of Makridakis, Ihlenburg
and Babuška [24] and Melenk [25]. Similar test functions were considered previously [30], and were
instrumental in the derivation of a Rellich-type identity [8]. Such tools were employed in the case of a
constant wavenumber, two-dimensional model problem [28]. The well-posedness was established under
the assumption that the bottom is downsloping, i.e., it is described as an increasing function of the range
x. A key step to this analysis was the derivation of a stability estimate that implied uniqueness which,
in turn, inferred existence [24, 25, 15].

We are interested in analysing the model mentioned above in the case of a variable wavenumber that
reflects time-harmonic wave propagation in an inhomogeneous medium. Variable wavenumber introduces
a number of technical issues which we address in the one dimensional problem below. For related early
works we refer to the work of Aziz et al. [2], where they proved a rigorous convergence theorem for a
one-dimensional heterogeneous Helmholtz problem under the assumption that k2h is sufficiently small.
Makridakis et al. [24] considered a problem with piecewise constant material properties in one dimension.
Recent works include the paper by Chaumont-Frelet [7] on high order methods for a one-dimensional
problem with piecewise constant coefficients that allow for an arbitrary number of jumps, the work of
Sauter and Torres [33] on the stability of a one-dimensional heterogenous Helmholtz equation for high
frequencies with non-smooth and rapidly oscillating coefficients on a bounded interval, and the paper
by Graham and Sauter [15], where they present the stability theory and the numerical analysis of the
Helmholtz equation with variable coefficients of low regularity, in one to three space dimensions.

The rest of the paper is organized as follows. In Section 2 we describe the problem governed by the
Helmholtz equation in the whole real line, with a harmonic point source located at some point x = xs,
and a wavenumber that may vary within a bounded interval that does not contain the source, while it
assumes constant but different values elsewhere. Then we introduce two artificial boundaries near and far
from the source, and we formulate an equivalent problem on the resulting bounded domain by imposing
DtN-type conditions on the artificial boundaries. The derivation of the near-field boundary condition is
discussed in detail. In Section 3 we describe the weak formulation of the problem, we introduce notation
and prove some preliminary results. Section 4 is devoted to the well-posedness of the variational problem,
that is established under an assumption that allows k to increase arbitrarily with x but imposes significant
restriction on the oscillations that are allowed. However, this assumption and the use of a “Rellich”-type
test function let us derive a stability estimate that implies uniqueness. Then existence is inferred by the
Fredholm alternative. Let us remark here that well-posedness may be also obtained using the unique
continuation principle, as in Graham and Sauter [15], without resorting to proving a stability estimate,
but this approach does not lead to wavenumber explicit estimates. In the remaining part of this section
we prove an inf-sup condition. Our approach allows for the reduction of the computational domain size
(see Section 6), enabling the use of efficient computational methods for higher wavenumbers. In Section
5, we demonstrate that classical error analysis can be derived for finite element approximations of our
model problem, with a focus on bounds that explicitly depend on the wavenumber. In Section 5.1,
we derive error estimates for linear elements by calculating the dependence on the variable k of the
corresponding mesh restrictions. In Section 5.2, we provide a more general stability and quasi-optimality
analysis applicable to abstract discrete spaces. We employ standard arguments based on ideas introduced
by Aziz et al. [2], Makridakis et al. [24], and Melenk [25], adapting the approach from Schatz [34]. The
concept of the approximability of the dual problem, introduced by Sauter [32], is essential in Section 5.2.
In Section 6, as a proof of concept, we present the outcome of some numerical experiments for various
wavenumber configurations. Our experiments indicate that the introduction of the artificial boundary
near the source and the associated boundary condition lead to an efficient model that accurately captures
the wave propagation features.
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2 Formulation

We consider the (locally) heterogeneous Helmholtz equation

−u′′ − k2(x)u = δ(x− xs), x ∈ R, (2.1)

where δ is the Dirac distribution. We assume that the wavenumber k is a C1 function that may vary
in a bounded interval [x1, x2], which does not include xs, while it remains constant elsewhere, see the
schematic representation in Figure 2. In particular, let xs < x1 < x2 and

k(x) =

 kL for x < x1,
ki(x) for x1 ≤ x ≤ x2,
kR for x > x2.

Moreover, we assume that k(x) is bounded below and above by two strictly positive numbers kmin and

xxs x1 x2

k = ki(x)k = kL k = kR

xL xR

Figure 2: Schematic representation of the problem setup and basic notation. The cross indicates the
location of the point source.

kmax, respectively, i.e. 0 < kmin ≤ k(x) ≤ kmax. Equation (2.1) is supplemented by the Sommerfeld
radiation condition at ±∞, ensuring that the wave field is outgoing as x→ ±∞.

A common procedure for the numerical solution of problems of this type, with a direct numerical method,
is to truncate the originally infinite domain by introducing an artificial boundary and applying suitable
non-reflecting conditions on it. In this one-dimensional model problem a standard practice is to introduce
two artificial boundaries at x = xL and x = xR, so that the computational domain (xL, xR) includes the
point source and the interval (x1, x2) where all the medium heterogeneities reside. Next, the classical
Dirichlet-to-Neuman (DtN) boundary conditions may be imposed to the artificial boundaries (x = xL
and x = xR). In this simple one-dimensional case, outgoing waves at ±∞ satisfy the corresponding
Sommerfeld condition at any finite x [12, 17], therefore the usual DtN boundary conditions are simply
u′(xL) + ikLu(xL) = 0 and u′(xR)− ikRu(xR) = 0.

However, in the current setup we may further truncate the domain and introduce the artificial boundary
at x = xL so that xs < xL < x1. In this way, the source is outside the computational domain and an
alternative condition must be imposed on the artificial boundary x = xL, ‘near’ the source, that will
account for the effect of the source and will also be ‘transparent’ (in the sense that it does not introduce
spurious reflections) for left-going waves. In what follows, we present the derivation of this ‘near-field’
boundary condition.

2.1 Derivation of the ‘near-field’ boundary condition

Let x < x1 and consider the associated homogeneous problem

−u′′ − k2Lu = 0. (2.2)

Equation (2.2) has two independent solutions φ1(x) = eikLx and φ2(x) = e−ikLx. The Wronskian is
equal to W (φ1, φ2) = −2ikL. Therefore, the solution of (2.1) for x < x1 may be written as

u(x) = a eikLx + b e−ikLx +

∫ x

x1

φ1(ξ)φ2(x)− φ2(x)φ1(ξ)

−2ikL
δ(ξ − xs) dξ

= a eikLx + b e−ikLx − 1

2ikL

∫ x

x1

(
eikLξe−ikLx − eikLxe−ikLξ

)
δ(ξ − xs) dξ

= a eikLx + b e−ikLx − 1

2ikL

∫ x

x1

(
e−ikL(x−ξ) − eikL(x−ξ)

)
δ(ξ − xs) dξ.

Case A: Let xs < x < x1. Then, xs ̸∈ (x, x1) and

u(x) = a eikLx + b e−ikLx.
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Case B : Let x < xs < x1. Then

u(x) = a eikLx + b e−ikLx − 1

2ikL

(
e−ikL(x−xs) − eikL(x−xs)

)
=

(
a+

1

2ikL
e−ikLxs

)
eikLx +

(
b− 1

2ikL
eikLxs

)
e−ikLx.

The term eikLx represents a right-going wave while the term e−ikLx represents a left-going wave. There-
fore, u is outgoing at −∞ if

a = − 1

2ikL
e−ikLxs .

Hence, for −∞ < x < xs we have

u(x) =
(
b− 1

2ikL
eikLxs

)
e−ikLx.

For xs < x < x1 we have

u(x) = a eikLx + b e−ikLx with a = − 1

2ikL
e−ikLxs ,

so that

u(x) = − 1

2ikL
eikL(x−xs) + b e−ikLx. (2.3)

Differentiating (2.3), we get for xs < x < x1

u′(x) = − 1

2ikL
ikl e

ikL(x−xs) − ikL b e
−ikLx

(2.3)
= −1

2
eikL(x−xs) − ikL

(
u(x) +

1

2ikL
eikL(x−xs)

)
= −ikLu(x)− eikL(x−xs).

Now, the near-field non-homogeneous DtN-type boundary condition results by evaluating the above at
x = xL, for some xL ∈ (xs, x1)

u′(xL) = −ikLu(xL)− eikL(xL−xs). (2.4)

Therefore, the original problem for (2.1) is replaced by the following equivalent problem posed in the
bounded interval Ω := (xL, xR). We seek a complex-valued function u such that

− u′′ − k2(x)u = 0, x ∈ Ω, (2.5)

u′(xL) = −ikLu(xL)− eikLd, (2.6)

u′(xR) = ikRu(xR). (2.7)

where d := xL − xs is the distance between the source and the near-field artificial boundary.

3 Weak formulation of the problem

Let H := H1(Ω) and denote by ∥ · ∥ the usual L2-norm and by ∥ · ∥1 the corresponding H1-norm. We
introduce the k-dependent norm

∥u∥H =
(
∥u′∥2 + ∥ku∥2

)1/2

=
(
∥u′∥2 +

∫
Ω

k2(x) |u(x)|2 dx
)1/2

. (3.1)

Since 0 < kmin ≤ k(x) ≤ kmax, ∥·∥H is equivalent to the standard H1-norm ∥ · ∥1. Moreover, let
D := xR − xL denote the distance between the two artificial boundaries.

Let v be a test function in H1(Ω). Multiply (2.5) by v, integrate over (xL, xR), and use integration by
parts and the boundary conditions (2.6), (2.7), to get∫ xR

xL

(
u′v′ − k2(x)uv

)
dx− ikRu(xR)v(xR)− ikLu(xL)v(xL) = eikLd v(xL).
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We introduce the sesquilinear form

B(u, v) :=
∫ xR

xL

(
u′v′ − k2(x)uv

)
dx− ikRu(xR)v(xR)− ikLu(xL)v(xL). (3.2)

Let u ∈ H1(Ω). Then the weak form of the problem (2.5)-(2.7) reads:

B(u, v) = F(v) for all v ∈ H1(Ω), (3.3)

where F is the antilinear functional defined by F(v) := eikLd v(xL).

Lemma 3.1. Let v ∈ H.

(i) It holds that

∥v∥ ≤ 1

kmin
∥v∥H and ∥v∥1 ≤ C1∥v∥H, where C1 := max

{
1,

1

kmin

}
. (3.4)

(ii) The following trace inequality holds

|v(a)| ≤
(
|v(xL)|2 + |v(xR)|2

)1/2 ≤ C2 ∥v∥1/2∥v∥1/21 ≤ C3
1√
kmin

∥v∥H, (3.5)

where C2 := 23/4 max
{
1, 1√

D

}
, C3 := C

1/2
1 C2, and a is either of the endpoints xL, xR of Ω.

Proof. (i) Since v ∈ H,

∥v∥2 ≤ 1

k2min

∥kv∥2 ≤ 1

k2min

(
∥v′∥2 + ∥kv∥2

)
=

1

k2min

∥v∥2H,

∥v∥21 ≤ ∥v′∥2 + 1

k2min

∥kv∥2 ≤ max
{
1,

1

k2min

}
∥v∥2H.

(ii) Consider the integral
∫
Ω

(
h |v|2

)
x
where h is the linear function h(x) := 2

D (x − xL) − 1, so that

h(xL) = −1 and h(xR) = 1, [15]. Using the fact that Re{vv̄′} = 1
2 (|v|

2)x, the Cauchy-Schwarz

inequality, the elementary inequality α+ β ≤
√
2(α2 + β2)1/2, and (3.4), we get that

|v(xR)|2 + |v(xL)|2 =

∫ xR

xL

(
h |v|2

)
x
=

∫ xR

xL

h (|v|2)x +
2

D

∫ xR

xL

|v|2 = 2

∫ xR

xL

h Re{vv′}+ 2

D
∥v∥2

≤ 2

∫ xR

xL

|h| |v| |v′|+ 2

D
∥v∥2 ≤ 2∥v∥∥v′∥+ 2

D
∥v∥2 = 2∥v∥

(
∥v′∥+ 1

D
∥v∥

)
≤ 2max

{
1,

1

D

}
∥v∥

(
∥v′∥+ ∥v∥

)
≤ 2

√
2max

{
1,

1

D

}
∥v∥∥v∥1

≤ 2
√
2max

{
1,

1

D

}
C1

1

kmin
∥v∥2H.

Proposition 3.1. For all u, v ∈ H, B is a bounded sesquilinear form with

|B(u, v)| ≤ C4∥u∥H∥v∥H, where C4 = 1 + C2
3

kL + kR
kmin

, (3.6)

and satisfies a G̊arding inequality

ReB(u, u) ≥ ∥u∥2H − 2k2max∥u∥2. (3.7)

Proof.

|B(u, v)| ≤ |
∫ xR

xL

u′v′ dx|+ |
∫ xR

xL

k2(x)uv dx|+ kR|u(xR)v(xR)|+ kL|u(xL)v(xL)|

≤ ∥u′∥∥v′∥+ ∥ku∥∥kv∥+ kR|u(xR)||v(xR)|+ kL|u(xL)||v(xL)|.
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Hölder’s inequality and (3.5) imply that

|B(u, v)| ≤ ∥u∥H∥v∥H +
C2

3

kmin
kR∥u∥H∥v∥H +

C2
3

kmin
kL∥u∥H∥v∥H =

(
1 + C2

3

kL + kR
kmin

)
∥u∥H∥v∥H.

Moreover,

ReB(u, u) =
∫ xR

xL

(|u′|2 − k2(x)|u|2) dx = ∥u∥2H − 2

∫ xR

xL

k2(x)|u|2 dx ≥ ∥u∥2H − 2k2max∥u∥2.

4 Well-posedness of the variational problem

Assumption. Suppose that there exists some θ > 0 such that

1 + (x− xL)
k′(x)

k(x)
≥ θ > 0. (4.1)

Theorem 4.1. Assume that (4.1) holds and let u ∈ H2(Ω) ∩H be a solution of (3.3). Then,

∥u∥H ≤ C5(k, θ,D), where C5 =
C3

θ
√
kmin

(
|1− θ|+ 2kRD

)
. (4.2)

Proof. Consider the ‘Rellich’ test function w(x) := (x − xL)u
′(x) + αu(x), where α is a real constant.

Clearly, w′(x) = (x− xL)u
′′(x) + (α+ 1)u′(x). Then,

B(u,w) =
∫ xR

xL

(
u′w̄′ − k2(x)uw̄

)
dx− ikRu(xR)w(xR)− ikLu(xL) w(xL)︸ ︷︷ ︸

=αu(xL)

=

∫ xR

xL

u′
[
(α+ 1)ū′ + (x− xL)ū

′′] dx−
∫ xR

xL

k2(x)u
[
(x− xL) ū

′ + αū
]
dx

− ikRu(xR)
[
(xR − xL)︸ ︷︷ ︸

=D

u′(xR)︸ ︷︷ ︸
=−ikRu(xR)

+αu(xR)
]
− iαkL|u(xL)|2

= (α+ 1)

∫ xR

xL

|u′|2 dx− α

∫ xR

xL

k2(x) |u|2 dx+

∫ xR

xL

(x− xL)u
′ū′′ dx

−
∫ xR

xL

(x− xL) k
2(x)uū′ dx− k2RD |u(xR)|2 − iαkR|u(xR)|2 − iαkL|u(xL)|2.

Recall that Re{uū′} = 1
2

(
|u|2

)
x
and Re{u′ū′′} = 1

2

(
|u′|2

)
x
. Therefore, taking real parts, we have that

ReB(u,w) = (α+ 1)

∫ xR

xL

|u′|2 dx− α

∫ xR

xL

k2(x) |u|2 dx

+

∫ xR

xL

(x− xL)Re{u′ū′′} dx−
∫ xR

xL

(x− xL) k
2(x) Re{uū′} dx− k2RD |u(xR)|2

= (α+ 1)

∫ xR

xL

|u′|2 dx− α

∫ xR

xL

k2(x) |u|2 dx

+
1

2

∫ xR

xL

(x− xL)
(
|u′|2

)
x
dx− 1

2

∫ xR

xL

(x− xL) k
2(x)

(
|u|2

)
x
dx− k2RD |u(xR)|2.

We integrate by parts to deduce that

1

2

∫ xR

xL

(x− xL)
(
|u′|2

)
x
dx =

[
1

2
(x− xL) |u′(x)|2

]xR

xL

− 1

2

∫ xR

xL

|u′|2 dx

=
1

2
D |u′(xR)|2︸ ︷︷ ︸

=k2
R|u(xR)|2

−1

2

∫ xR

xL

|u′|2 dx

=
1

2
Dk2R|u(xR)|2 −

1

2

∫ xR

xL

|u′|2 dx,
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and

1

2

∫ xR

xL

(x− xL) k
2(x)

(
|u|2

)
x
dx =

[
1

2
(x− xL) k

2(x) |u(x)|2
]xR

xL

− 1

2

∫ xR

xL

(
(x− xL)k

2(x)
)′ |u|2 dx

=
1

2
Dk2R |u(xR)|2 −

1

2

∫ xR

xL

k2(x) |u|2 dx

− 1

2

∫ xR

xL

(x− xL) 2 k(x) k
′(x) |u|2 dx.

Hence,

ReB(u,w) = (α+ 1)

∫ xR

xL

|u′|2 dx− α

∫ xR

xL

k2(x) |u|2 dx+
1

2
Dk2R|u(xR)|2 −

1

2

∫ xR

xL

|u′|2 dx

− 1

2
Dk2R |u(xR)|2 +

1

2

∫ xR

xL

k2(x) |u|2 dx

+
1

2

∫ xR

xL

k2(x) (x− xL) 2
k′(x)

k(x)
|u|2 dx− k2RD |u(xR)|2

=
(
α+

1

2

) ∫ xR

xL

|u′|2 dx+
1

2

∫ xR

xL

k2(x)
[
1 + 2 (x− xL)

k′(x)

k(x)
− 2α

]
|u|2 dx− k2RD |u(xR)|2.

Now take α = − 1
2 + θ

2 . (Of course, α+ 1
2 = θ

2 and 1− 2α = 2− θ.) Then,

ReB(u,w) = θ

2
∥u′∥2 + 1

2

∫ xR

xL

k2(x)
(
2 + 2 (x− xL)

k′(x)

k(x)
− θ

)
|u|2 dx− k2RD |u(xR)|2. (4.3)

Since (4.1) holds, it turns out that 2 + 2 (x − xL)
k′(x)
k(x) − θ ≥ θ for all x ∈ [xL, xR]. This implies the

estimate

θ

2
∥u′∥2 + θ

2

∫ xR

xL

k2(x) |u|2 dx ≤ ReB(u,w) + k2RD |u(xR)|2 ⇒ θ

2
∥u∥2H ≤ |B(u,w)|+ k2RD |u(xR)|2.

Recall that |B(u,w)| = |F(w)| = |eikLd||w(xL)| = |α||u(xL)| = | 1−θ
2 ||u(xL)|. Therefore

θ

2
∥u∥2H ≤ |1− θ|

2
|u(xL)|+ k2RD |u(xR)|2. (4.4)

It also holds that

− ImB(u, u) = kR|u(xR)|2 + kL|u(xL)|2. (4.5)

Hence

k2RD |u(xR)|2 ≤ kRD
(
kR|u(xR)|2 + kL|u(xL)|2

)
= −kRD ImB(u, u),

from which we have

k2RD |u(xR)|2 ≤ kRD |B(u, u)| = kRD |F(u)| = kRD |u(xL)|. (4.6)

Therefore, (4.4), (4.6), and (3.5), imply that

θ

2
∥u∥2H ≤

( |1− θ|
2

+ kRD
)
|u(xL)| ≤

( |1− θ|
2

+ kRD
) C3√

kmin

∥u∥H,

that is,

∥u∥H ≤ C3

θ
√
kmin

(
|1− θ|+ 2kRD

)
.
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Remark 4.1. The virial condition (4.1) can be formally derived from a well-known quantum non-
trapping estimate applied to the homogeneous version of the Helmholtz equation (2.2). Let k0 be any
fixed reference wavenumber and η(x) = k2(x)/k20. We rewrite the homogeneous Helmholtz equation in
the form of a Schrödinger equation −u′′ + V (x) = Eu(x), where V (x) = k20(1− η(x)) and E = k20. The
quantum non-trapping condition (see equation (21.9) in Section 21.1 of Hislop and Sigal [16]) requires
SE(x;V ; υ) := 2υ′(x)(E − V (x))− υ(x)V ′(x) ≥ ϵ0 for some ϵ0 > 0, and a smooth function υ(x). Thus,
we get the condition

k20(2υ
′η + υη′) ≥ ϵ0 . (4.7)

Here, we make the special choice υ(x) = x− xL, which implies

2η + (x− xL)η
′ ≥ ϵ0/k

2
0. (4.8)

By substituting η = k2(x)/k20 in the last inequality we derive (4.1) with θ = ϵ0/2k
2
max.

The solution of the differential inequality (4.7) is υ(x) = 1
2k2

0
η−1/2(x)

∫ x

α0
α(s)η−1/2(s)ds, α0 ≤ x < ∞,

where α(s) ≥ ϵ0 is an unspecified function which can be chosen according to a particular problem. Then,
SE(x;V ; υ) = α(x), α0 ≤ x < ∞. Note that Aziz et al. [2] use such function υ with α(s) ≡ 1 in the
proof of Lemma 2.1.

A multidimensional version of condition (4.8) is required for the proof of Theorem 2.19 in Graham et al.
[14], where they study the 2D and 3D exterior problem for the Helmholtz equation in a heterogeneous
medium by using Morawetz’s multipliers. An instructive explanation of this condition, on the basis
of geometrical optics, is given in Section 7 of this paper. To the best of our knowledge, this virial
condition appeared for first time in the works of Kucherenko [22, 23] where he constructed the short-wave
asymptotic expansion of Green’s function for the multidimensional Helmholtz equation in inhomogeneous
medium and the stationary Schrödinger equation.

Remark 4.2. The use of the standard test function w(x) = (x−xL)u′(x) would require the assumption

1 + 2(x − xL)
k′(x)
k(x) ≥ θ′ > 0. Note that in two and three dimensions [14], the use of the analogous test

function w(x) = x · ∇u requires again the assumption 1 + x·∇k(x)
k(x) ≥ θ′′ > 0.

Remark 4.3. The case θ ≥ 1 in assumption (4.1) forces k to be strictly increasing. Therefore, to allow
some oscillatory behavior for k, in practice we will assume that 0 < θ < 1.

Proposition 4.1. Assume that (4.1) holds and let u ∈ H2(Ω) ∩ H be a solution of B(u, v) = 0, for all
v ∈ H. Then, u = 0 a.e. in Ω.

Proof. Take v = u. Then (4.5) implies that kR|u(xR)|2 + kL|u(xL)|2 = 0, i.e. u(xR) = u(xL) = 0. In

turn, (4.4) shows that ∥u∥2H ≤ 0.

Proposition 4.1 implies uniqueness for the problem (3.3). Existence follows from G̊arding inequality (3.7)
and the Fredholm alternative.

In the remaining of this section we will prove a stability result for an auxiliary problem which will allow
us to establish an inf-sup condition for the sesquilinear form (3.2).

Proposition 4.2. Assume that (4.1) holds and let u ∈ H2(Ω) ∩H be a solution of

B(u, v) = (f, v) for all v ∈ H, (4.9)

for some f ∈ L2(Ω). Then

∥u∥H ≤ C6(k, θ,D)∥f∥, where C6 =
2
√
2Dmax

{
1, kR

kmin

(
1 + |1−θ|

2kRD

)}
θ

. (4.10)

Furthermore, u ∈ H2(Ω) and
∥u′′∥ ≤ (1 + C6kmax)∥f∥. (4.11)

Proof. As in the proof of Theorem 4.1, we consider the ‘Rellich’ test function w(x) = (x − xL)u
′(x) +

θ−1
2 u(x). Using the same arguments as before we may prove that

θ

2
∥u′∥2 + θ

2

∫ xR

xL

k2(x) |u|2 dx ≤ |B(u,w)|+ kRD |B(u, u)| = |(f, w)|+ kRD |(f, u)|.
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Obviously, |(f, u)| ≤ 1
kmin

∥f∥∥ku∥, and since w(x) = (x− xL)u
′(x) + θ−1

2 u(x) we have that

|(f, w)| =
∣∣∫ xR

xL

[
(x− xL)f(x)ū

′(x) +
θ − 1

2
ū(x)

]
dx

∣∣
≤ D

∣∣∫ xR

xL

f(x)ū′(x) dx
∣∣+ |1− θ|

2

∣∣∫ xR

xL

f(x)ū(x) dx
∣∣

≤ D ∥f∥∥u′∥+ |1− θ|
2kmin

∥f∥∥ku∥.

Using the relations above we get that

θ

2
∥u∥2H ≤ D ∥f∥∥u′∥+

( |1− θ|
2kmin

+
kRD

kmin

)
∥f∥∥ku∥

= D ∥f∥∥u′∥+ kR
kmin

(
1 +

|1− θ|
2kRD

)
D ∥f∥∥ku∥

= 2

√
ε

2

[
∥u′∥+ kR

kmin

(
1 +

|1− θ|
2kRD

)
∥ku∥

] D√
ε
∥f∥

≤ ε

4

[
∥u′∥+ kR

kmin

(
1 +

|1− θ|
2kRD

)
∥ku∥

]2
+
D2

ε
∥f∥2

≤ ε

2

[
∥u′∥2 +

( kR
kmin

)2(
1 +

|1− θ|
2kRD

)2

∥ku∥2
]
+
D2

ε
∥f∥2

≤ ε

2
max

{
1,
( kR
kmin

)2(
1 +

|1− θ|
2kRD

)2}
∥u∥2H +

D2

ε
∥f∥2,

where ε is an appropriately small positive number. Therefore,(
θ − ε max

{
1,
( kR
kmin

)2(
1 +

|1− θ|
2kRD

)2})
∥u∥2H ≤ 2D2

ε
∥f∥2.

Now we choose ε such that ε max
{
1,
(

kR

kmin

)2 (
1 + |1−θ|

2kRD

)2}
= θ

2 . Then,

θ

2
∥u∥2H ≤ 2D2

ε
∥f∥2 =

4D2 max
{
1,
(

kR

kmin

)2(
1 + |1−θ|

2kRD

)2}
θ

∥f∥2

⇒ ∥u∥2H ≤
8D2 max

{
1,
(

kR

kmin

)2 (
1 + |1−θ|

2kRD

)2}
θ2

∥f∥2

⇒ ∥u∥H ≤
2
√
2Dmax

{
1, kR

kmin

(
1 + |1−θ|

2kRD

)}
θ

∥f∥.

To prove (4.11), note that u is also a (strong) solution to the problem:

− u′′ − k2(x)u = f, x ∈ Ω,

u′(xL) = −ikLu(xL),
u′(xR) = ikRu(xR).

Hence, u ∈ H2(Ω) and

∥u′′∥ ≤ ∥k2u∥+ ∥f∥ ≤ kmax∥ku∥+ ∥f∥ ≤ kmax∥u∥H + ∥f∥
(4.10)

≤ C6kmax∥f∥+ ∥f∥ = (1 + C6kmax)∥f∥.

Theorem 4.2 (Inf-sup condition). Assume that (4.1) holds. Then, the sesquilinear form B(·, ·) defined
on H×H satisfies

sup
0̸=v∈H

ReB(u, v)
∥v∥H

≥ 1

kmin

( 1

kmin
+ C7

)−1

∥u∥H for all u ∈ H, (4.12)

where

C7 :=
4
√
2Dmax

{
1, kR

kmin

(
1 + |1−θ|

2kRD

)}
θ

k2max

k2min

.
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Proof. Let u ∈ H be given. We shall show that there exists vu ∈ H such that

ReB(u, vu) ≳ ∥u∥H∥vu∥H,

where we use the notation A ≳ B as a shorthand for the inequality A ≥ cB, for some constant c. To
this end, it is enough to show that: (a) ReB(u, vu) ≳ ∥u∥2H, and (b) ∥u∥H ≳ ∥vu∥H.

Let vu := 1
k2
min
u+ z, for some z ∈ H. Then,

B(u, vu) = B
(
u,

1

k2min

u+ z
)
=

1

k2min

B(u, u) + B(u, z)

=
1

k2min

B(u, u) + 2
k2max

k2min

∥u∥2︸ ︷︷ ︸
:=I

+B(u, z)− 2
k2max

k2min

∥u∥2︸ ︷︷ ︸
:=II

.

Now we choose z such that the term II vanishes, i.e., let z be the solution of

B(ϕ, z) = 2
k2max

k2min

(ϕ, u), for all ϕ ∈ H. (4.13)

Note that, since H ⊂ L2(Ω), the strong formulation associated to (4.13) reads: Find z ∈ H that satisfies

the following adjoint boundary value problem with datum 2
k2
max

k2
min

u,

−z′′ − k2(x)z = 2
k2max

k2min

u, x ∈ Ω,

z′(xL) = ikLz(xL),

z′(xR) = −ikRz(xR).

For (4.13), we may prove that the results of Proposition 4.2 still hold, thus z may be identified as the
unique solution of (4.13) that satisfies the estimate (4.10). Hence,

∥z∥H ≤ C7 ∥u∥, where C7 :=
4
√
2Dmax

{
1, kR

kmin

(
1 + |1−θ|

2kRD

)}
θ

k2max

k2min

.

Moreover, (3.4) implies that

∥z∥H ≤ C7

kmin
∥u∥H. (4.14)

With this choice of z we have that

ReB(u, vu) =
1

k2min

B(u, u) + 2
k2max

k2min

∥u∥2
(3.7)

≥ 1

k2min

∥u∥2H − 2
k2max

k2min

∥u∥2 + 2
k2max

k2min

∥u∥2 =
1

k2min

∥u∥2H.

This shows that (a) holds. Specifically,

ReB(u, vu) ≥
1

k2min

∥u∥2H. (4.15)

Now,

∥vu∥H =

∥∥∥∥ 1

k2min

u+ z

∥∥∥∥
H

≤ 1

k2min

∥u∥H + ∥z∥H
(4.14)

≤ 1

k2min

∥u∥H +
C7

kmin
∥u∥H =

1

kmin

( 1

kmin
+ C7

)
∥u∥H.

Hence

∥u∥H ≥ kmin

( 1

kmin
+ C7

)−1

∥vu∥H, (4.16)

and (4.15), (4.16), imply that

ReB(u, vu) ≥
1

k2min

∥u∥2H ≥ 1

k2min

∥u∥Hkmin

( 1

kmin
+ C7

)−1

∥vu∥H =
1

kmin

( 1

kmin
+ C7

)−1

∥u∥H∥vu∥H.
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5 Finite element approximation

In this section, as a proof of concept, we demonstrate that classical error estimates and quasi-optimality
bounds can be derived for finite element approximations of our model problem. Since one of the aims of
our approach is to significantly reduce the size of the computational domain, see the numerical results
in Section 6, thereby enabling efficient methods for higher wavenumbers, we wanted to theoretically
support the claim that the behaviour of the finite element method remains stable as expected. The
material presented here can be derived using well-established arguments.

First, we derive error bounds for linear elements following Schatz [34], aiming to explicitly calculate the
dependence of the mesh size restriction on k, see (5.7). Next, we extend our analysis to arbitrary discrete
spaces, including any type of conforming finite elements, demonstrating quasi-optimal bounds and the
discrete analog of the inf-sup stability condition (4.12). This analysis is based on ideas introduced in
Aziz et al. [2], Makridakis et al. [24], Melenk [25], and adapts the approach from Schatz [34]. It also
incorporates the notion of approximability of the dual problem introduced by Sauter [32], all of which
are now considered standard arguments.

In Section 5.1, we explicitly work out the dependence on variable k in the involved constants. In
Section 5.2, we provide a more general stability and quasi-optimality analysis. For a discussion on the
restrictions and a comparison to existing results, see Remarks 5.1, 5.2.

5.1 Convergence for linear elements

In what follows we use the classical ideas of Schatz [34]. For 0 < h < 1, let Sh be a finite-dimensional
subspace of continuous, piecewise polynomial functions in H1. We assume that for every v ∈ H2(Ω) the
following approximation property holds

inf
ϕ∈Sh

{∥v − ϕ∥+ h∥v′ − ϕ′∥} ≤ C8 h
2∥v′′∥. (5.1)

In the sequel, C will denote generic constants, not necessarily the same at any two different places, that
are independent of k. Let uh be the solution of

B(uh, ϕ) = eikLdϕ(xL), ∀ϕ ∈ Sh. (5.2)

Let us denote eh := u− uh. Then, G̊arding’s inequality (3.7) implies that

ReB(eh, eh) ≥ ∥eh∥H
2 − 2 k2max∥eh∥2 ⇔ ∥eh∥H

2 ≤ ReB(eh, eh) + 2 k2max∥eh∥2.

Note that B(eh, ϕ) = 0, for all ϕ ∈ Sh. Hence for C4 defined as in (3.6)

|B(eh, eh)| = |B(eh, u− ϕ)|
≤ ∥e′h∥∥(u− ϕ)′∥+ ∥keh∥∥u− ϕ∥+ kR |eh(xR)||(u− ϕ)(xR)|+ kL |eh(xL)||(u− ϕ)(xL)|
≤ ∥e′h∥∥(u− ϕ)′∥+ ∥keh∥∥u− ϕ∥+ kR |eh(xR)||(u− ϕ)(xR)|+ kL |eh(xL)||(u− ϕ)(xL)|
(5.1),(3.5)

≤ C8h ∥e′h∥∥u′′∥+ C8h
2∥keh∥∥u′′∥+ kR

C3√
kmin

∥eh∥HC2∥u− ϕ∥1/2∥u− ϕ∥1/21

+ kL
C3√
kmin

∥eh∥HC2∥u− ϕ∥1/2∥u− ϕ∥1/21

= 2
√
ε ∥e′h∥

C8h

2
√
ε
∥u′′∥+ 2

√
ε ∥keh∥

C8h
2

2
√
ε
∥u′′∥+ 2

√
ε ∥eh∥H C2C3C

2
8

kL + kR

2
√
ε
√
kmin

h3/2∥u′′∥2

≤ ε ∥e′h∥2 + C2
8

h2

4ε
∥u′′∥2 + ε ∥keh∥2 + C2

8

h4

4ε
∥u′′∥2 + ε ∥eh∥2H

+ C2
2C

2
3C

4
8

(kL + kR)
2

4εkmin
h3∥u′′∥2

≤ 2ε∥eh∥2H + C
(h2
4ε

+
h4

4ε
+ C2

3

(kL + kR)
2

kmin

h3

4ε

)
∥u′′∥2.

Hence

∥eh∥H
2 ≤ ReB(eh, eh) + 2 kmax∥eh∥2 ≤ |B(eh, eh)|+ 2 k2max∥eh∥2

≤ 2ε∥eh∥H
2
+ C

(h2
4ε

+ C2
3

(kL + kR)
2

kmin

h3

4ε
+
h4

4ε

)
∥u′′∥2 + 2 k2max∥eh∥2.
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Choosing ε = 1/4 shows that

1

2
∥eh∥H

2 ≤ C
(
1 + C2

3

(kL + kR)
2

kmin
h+ h2

)
h2 ∥u′′∥2 + 2 k2max∥eh∥2. (5.3)

Now let z ∈ H be the solution of the adjoint problem

B(ψ, z) = k2max(ψ, eh), for all ψ ∈ H. (5.4)

Then, (4.11) shows that
∥z′′∥ ≤ (1 + C6kmax)k

2
max∥eh∥. (5.5)

Let χ ∈ Sh. Equation (5.4) for ψ = eh implies that

k2max∥eh∥2 = B(eh, z) = B(eh, z − χ)
(3.6)

≤ C4∥eh∥H∥z − χ∥H.

Notice that

∥z − χ∥H
2
= ∥(z − χ)′∥2 + ∥k(z − χ)∥2 ≤ ∥(z − χ)′∥2 + k2max∥z − χ∥2

(5.1)

≤ C2
8 h

2∥z′′∥2 + C2
8 k

2
maxh

4∥z′′∥2 = C
(
1 + h2k2max

)
h2∥z′′∥2.

Therefore

k2max∥eh∥2 ≤ CC4∥eh∥H
(
1 + h2k2max

)1/2
h∥z′′∥

(5.5)

≤ CC4∥eh∥H
(
1 + h2k2max

)1/2
h (1 + C6kmax) k

2
max∥eh∥,

from which we conclude that

∥eh∥ ≤ CC4

(
1 + h2k2max

)1/2
(1 + C6kmax)h ∥eh∥H. (5.6)

Hence, by (5.3) and (5.6) we obtain

1

2
∥eh∥H

2 ≤ C
(
1 + C2

3

(kL + kR)
2

kmin
h+ h2

)
h2 ∥u′′∥2 + 2 k2max∥eh∥2

≤ C
(
1 + C2

3

(kL + kR)
2

kmin
h+ h2

)
h2 ∥u′′∥2 + 2C2C2

4

(
1 + h2k2max

)
(1 + C6kmax)

2k2maxh
2∥eh∥H

2
.

Equivalently,(1
2
− 2C2C2

4

(
1 + h2k2max

)
(1 + C6kmax)

2k2maxh
2
)

︸ ︷︷ ︸
=C

∥eh∥H
2 ≤ C

(
1 + C2

3

(kL + kR)
2

kmin
h+ h2

)
h2 ∥u′′∥2.

Then, provided that h is small enough so that(1
2
− 2C2C2

4

(
1 + h2k2max

)
(1 + C6kmax)

2k2maxh
2
)
= C ≥ 1

4
, (5.7)

the following H1–estimate holds
∥eh∥H ≤ C(k, h)h ∥u′′∥.

The corresponding L2–estimate follows from (5.6):

∥eh∥ ≤ C(k, h)h2 ∥u′′∥.

5.2 Convergence for general discrete spaces

The results below are based on general discrete spaces Vh, which are finite-dimensional subspaces capable
of approximating efficiently solutions to our model. Without loss of generality, we denote by h the generic
discretisation parameter, not necessarily associated with the mesh size. It will be instrumental to use
the dual problem: for g ∈ L2 let z ∈ H be the solution of the adjoint problem

B(ψ, z) = (ψ, g), for all ψ ∈ H. (5.8)
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Let T be the solution operator T : L2 → H, i.e., z = Tg. The main idea in Sauter [32] is to introduce
the quantity

η(Vh) = sup
0 ̸=g∈L2

inf
χ∈Vh

∥T g − χ∥H
∥g∥

. (5.9)

We shall assume that η(Vh) → 0 as h → 0. Denoting Ψ = T (u − uh), where uh ∈ Vh is the solution of
the discrete problem

B(uh, ϕ) = eikLdϕ(xL), ∀ϕ ∈ Vh, (5.10)

we have that

∥eh∥2 = B(eh, Ψ) = B(eh, Ψ − χ) ≤ C4∥eh∥H∥Ψ − χ∥H.

Therefore,

∥eh∥ ≤ C4 η(Vh) ∥eh∥H.

Hence, for any ϕ ∈ Vh,

∥eh∥H
2 ≤ ReB(eh, eh) + 2 k2max∥eh∥2 ≤ |B(eh, eh)|+ 2 k2max∥eh∥2

≤ |B(eh, u− ϕ)|+ 2 (C4 η(Vh) )
2k2max ∥eh∥H

2
.

Therefore we conclude that
∥u− uh∥H ≤ 2C4 inf

χ∈Vh

∥u− χ∥H, (5.11)

provided the discrete spaces are chosen for sufficiently small h so that the following condition is satisfied:

(C4 η(Vh) )
2k2max ≤ 1

4
. (5.12)

This condition, for constant wavenumber k, is the same as that used in the work of Sauter [32]. Under
similar restrictions on η, one may prove the discrete analog of the inf-sup condition, i.e., for all ψ ∈ Vh,
there holds

sup
0̸=v∈Vh

ReB(ψ, v)
∥v∥H

≥ α

kmin

( 1

kmin
+ C7

)−1

∥ψ∥H, (5.13)

where α is independent of k and the constant C7 is defined in (4.12). Notably, (5.13) implies quasi-
optimal bounds but with constants that depend on the inverse of the inf-sup constant in (5.13). For
interesting discussions on this issue, see [18, 24]. Analogous differences on the stability and quasi-
optimality constants appear in [32, 26].

Remark 5.1. The main ideas of the proofs of inf-sup stability and quasi-otimality using variational
arguments can be traced back to Aziz et al. [2] (quasioptimality), Makridakis et al. [24] (discrete
inf-sup), and with a slightly different proof in Melenk [25]. Discrete stability using discrete Green’s
function was established by Ihlenburg and Babuska [18] . The variational arguments were enriched by
the interesting idea of Sauter [32] to include the approximability of the dual problem in an abstract form,
described above. This was important, since it allowed a series of developments regarding the concrete
assessment of restrictions of the type (5.12) for each discrete space. For example, in the case of Helmholtz
equation with constant coefficients and constant k, [26] demonstrated that the h-p finite element method
yields quasi-optimality and discrete stability provided hk is sufficiently small and p ≥ C log k. These
results are based on explicit representations of the solution of the dual problem with right-hand side in
the discrete space and do not extend straightforwardly to other cases of interest, such as when variable
coefficients and wavenumbers are considered. Recent developments in this direction include, e.g., [6, 11].

Remark 5.2. The quasi-optimality bound (5.11) is very similar to the one derived in Theorem 4.2 of
Graham and Sauter [15], although the definition of η(Vh) is slightly different. In Theorem 4.5 of [15],
concrete bounds for η(Vh) are derived for finite element spaces that satisfy the analog of (5.1). It is
interesting to note, as expected, the similarity of the corresponding mesh restrictions to those required
to establish the bound in Section 5.1, as a consequence of the analog of (5.12). These restrictions, roughly
speaking, require k2h to be sufficiently small which is known to be an irreducible constraint for linear
elements.
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6 Numerical experiments

In this section we comment on the outcome of some numerical experiments performed with a code
that implements a finite element method with piecewise linear, quadratic or cubic basis functions, for
the solution of (3.3) with a variable wavenumber. In the case of a constant wavenumber k0, a direct
comparison of the numerical solution with the exact solution of the problem u(x) = i/(2k0) exp(ik0|x−
xs|), confirmed the expected rates of convergence in the L2 and ∥·∥H norms.

Here, we consider a variable wavenumber k(x) = 2πfs/c(x), where fs is the frequency of the harmonic
source (in Hz) and c(x) is the sound speed (in m/s). In all test cases reported below, the frequency is
set to fs = 4.2 kHz, the source is located at xs = −10, and the sound speed varies within the interval
[x1, x2] = [5, 15], where all distances are in meters. The results shown below were obtained for a uniform
discretization of the interval [xL, xR] with N elements and piecewise linear basis functions.

Test case 1. In our first experiment we consider a sound speed that is equal to c1 = 5500 m/s for
x < x1, decreases linearly from c1 to c2 = 2500 m/s in [x1, x2], and is equal to c2 for x > x2. This
corresponds to a wavenumber k that increases from kL(x1) ≈ 4.80 to kR(x2) ≈ 10.56, see the graph in
the left subplot of Figure 3. The right plot of Figure 3 shows the modulus of the approximate solution
uh in a logarithmic scale for the vertical axis. The two line colours, blue and red, correspond to the
numerical solution computed on a uniform partition of [xL, xR] = [−5, 25] with N = 15000 elements and
a uniform partition of [xL, xR] = [0, 20] with N = 10000 elements, respectively. In Figure 4 we plot the
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Figure 3: The graph of the wavenumber (left) and the modulus of uh (right) for a linearly decreasing
sound speed profile and two different locations of the artificial boundaries.

real (left subplot) and the imaginary part (right subplot) of the finite element solution uh for the same
two locations of the artificial boundaries. A direct numerical comparison indicates that the quality of
the approximation is independent of the location of the artificial boundaries.
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Figure 4: Real part (left) and imaginary part (right) of the numerical solution for a linearly decreasing
sound speed profile and two different locations of the artificial boundaries.
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Test case 2. Here we consider a sound speed that increases linearly from c1 = 2500 m/s to c2 =
5500 m/s in [x1, x2], while it is equal to c1 for x < x1, and to c2 for x > x2, respectively. The wavenumber
k decreases from kL(x1) ≈ 10.56 to kR(x2) ≈ 4.80 and is depicted in the left subplot of Figure 5. In
the right plot of Figure 5 we present the modulus of the approximate solution uh in a logarithmic scale
for the vertical axis, for the same locations of the artificial boundaries as in the previous test case. The
two line colours, blue and red, correspond to the numerical solution computed on a uniform partition
of [xL, xR] = [−5, 25] with N = 15000 elements and a uniform partition of [xL, xR] = [0, 20] with
N = 10000 elements, respectively. The corresponding real and imaginary parts are shown in the left and
right subplots of Figure 6, respectively. Numerical comparisons verifies the excellent agreement between
the two solution curves and confirms the efficiency of the proposed approach.
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Figure 5: The graph of the wavenumber (left) and the modulus of uh (right) for a linearly increasing
sound speed profile and two different locations of the artificial boundaries.
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Figure 6: Real part (left) and imaginary part (right) of the numerical solution for a linearly increasing
sound speed profile and two different locations of the artificial boundaries.

Test case 3. As a more challenging numerical experiment we consider an oscillatory sound speed
profile defined by

c(x) =

 5500 for x < x1,
5500− 3000

[
x− x1 + sin

(
5π(x− x1)

)]
/(x2 − x1) for x1 ≤ x ≤ x2,

2500 for x > x2.
(6.1)

The graph of the wavenumber k for the sound speed defined in (6.1) appears in the left plot in Figure 7.
The right plot of Figure 7 shows the modulus of the approximate solution uh in a logarithmic scale for
the vertical axis. The two line colours, blue and red, correspond to the numerical solution computed
on a uniform partition of [xL, xR] = [−5, 25] with N = 15000 elements and a uniform partition of
[xL, xR] = [0, 20] with N = 10000 elements, respectively. In Figure 8 we plot the real and imaginary
parts of uh computed with the same two different locations of the artificial boundaries.
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Figure 7: The graph of the wavenumber (left) and the modulus of uh (right) for the sound speed profile
(6.1) and two different locations of the artificial boundaries.
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Figure 8: Real part (left) and imaginary part (right) of the numerical solution for the sound speed profile
(6.1) for different locations of the artificial boundaries.

Test case 4. As a final example, we consider a sound speed defined by

c(x) =

 2500 for x < x1,
2500 + 3000

[
x− x1 + sin

(
5π(x− x1)

)]
/(x2 − x1) for x1 ≤ x ≤ x2,

5500 for x > x2.
(6.2)

The graph of the wavenumber k for the sound speed defined in (6.2) appears in the left plot in Figure 9.
The right plot of Figure 9 shows the modulus of the approximate solution uh in a logarithmic scale for
the vertical axis. The two line colours, blue and red, correspond to the numerical solution computed
on a uniform partition of [xL, xR] = [−5, 25] with N = 15000 elements and a uniform partition of
[xL, xR] = [0, 20] with N = 10000 elements, respectively. In Figure 10 we plot the real and imaginary
parts of uh computed with the same two different locations of the artificial boundaries.

From the test cases presented here, and from the outcome of many other experiments with different
sound speed profiles and with finite element spaces with piecewise quadratic or cubic basis functions,
we can conclude that the truncation of the domain and the introduction of an artificial boundary near
the source leads to an efficient method which requires only a small number of elements, and captures
the wave propagation well. It is worth mentioning that although in the last three test cases the virial
condition (4.1) does not hold, the computation of the numerical solution is still effective, and the quality
of the approximation is excellent, independently of the location of the artificial boundaries.

A final note concerns the modulus of the computed solution shown in Figures 3, 5, 7, and 9. As
expected, outside the interval (x1, x2) = (5, 15) where k is constant it appears to be periodic while
within the interval is aperiodic due to the scattering of the wave by the inhomogeneity. It turns out that
the scattering effect is stronger and the oscillations of the solution are profound in the presence of rough
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Figure 9: The graph of the wavenumber (left) and the modulus of uh (right) for the sound speed profile
(6.2) for different locations of the artificial boundaries.
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Figure 10: Real part (left) and imaginary part (right) of the numerical solution for the sound speed
profile (6.2) for different locations of the artificial boundaries.

oscillations in the wave speed, the worst case among the test cases that we have presented here appears
for a rough inhomogeneity where the wavenumber decreases in an oscillatory way (Figure 9).
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