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ABSTRACT 
A coupled mode and a finite element method are used in numerical simulations of underwater 
sound propagation in axially symmetric, multilayered environments with penetrable bottom and 
a number of fluid layers of different acoustic properties, separated by interfaces of general 
topography. The schemes are compared and applied to test problems with sea-mount type 
interfaces, and to sloping interface environments.  
 
 
1. INTRODUCTION 
We consider the underwater acoustic boundary-value problem (b.v.p.) in an axially symmetric 
sea environment characterized by a penetrable bottom of variable topography and several 
interfaces, also of general shape, separating fluid layers of different acoustic properties. The 
approximate solution of this waveguide b.v.p. is a central problem in computational underwater 
acoustics, [JKPS]. In this note, we shall use a coupled-mode and a finite element method for 
solving it. 
The coupled-mode method, [ABL], [ABG], [AB], is effected by an enhanced local mode 
representation, which contains, in addition to the usual propagating and evanescent modes, 
additional correction modes, associated with the sloping interfaces and bottom. By including 
these sloping interface modes, one avoids using ‘staircase’ approximations resulting in loss of 
accuracy and energy or leading to heavy computational requirements. The finite element 
method, cf. [KD], [MKD], is a standard Galerkin/P1 discretization of the b.v.p., coupled with an 
exact, nonlocal absorbing boundary condition at the exterior boundary of the waveguide and 
with an efficient iterative method for solving the attendant large sparse linear systems. 
In Section 2 we pose the b.v.p. and introduce notation. In Sections 3 and 4 we present the two 
solvers in more detail, while in Section 5 we show numerical results that we obtained by 
applying the methods to two test cases of propagation and scattering in two-layer domains 
separated by sea-mount and upslope types of interfaces.  
 
 
2. THE BOUNDARY-VALUE PROBLEM 
We consider the range-dependent, cylindrically symmetric marine environment shown in Fig.1. 
For simplicity, we consider two fluid layers, water of constant density 1ρ  and sediment of 

constant density 2 1ρ ρ> , separated by the interface : ( )J z h r= −  and overlying a perfectly rigid 
horizontal boundary at z H= − . We let ( , )c c r z=  be the speed of sound (discontinuous at the 

interface) and suppose that in the near region (0 )N
ND r r≤ ≤  and the far region ( )F

FD r r≥  the 
acoustic and geometric parameters are range independent. (Thus, c  and h  vary with r  only in  
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                        Figure 1. Domain  decomposition  and  notation. The source is denoted by (∗). 
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the intermediate region ID , where N Fr r r< < .) The acoustic field is generated by a point 

harmonic source of frequency f , located at 0z z=  on the axis of symmetry. The acoustic 

propagation and scattering boundary-value problem in the domain 0 r< , 0H z− ≤ ≤ , is to 
determine a complex-valued function ( , )p p r z=  satisfying 
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3. THE FINITE ELEMENT METHOD (FEM) 
We consider the Helmholtz equation (1) with zero right hand side on the domain 

1 2{( , ), 0, }z r H z R r RΩ = − ≤ ≤ ≤ ≤ , where 10 NR r< ≤ , 2 FR r≥ . At the left boundary 1r R= we 

suppose that the field is given (by the coupled mode program), and at 0z =  and z H= −  we 
pose the b.c. (2) and (3), respectively. At the outer boundary 2r R=  we pose the exact, 
nonlocal, nonreflecting boundary condition (cf. [G] and the references in [KD]) 

                                           2( ), , 0,
p

T p r R H z
r

∂ = = − ≤ ≤
∂

              .                                 (7) 

where T  is the integral operator associated with the DtN map of the exterior wave field 

evaluated at 2r R= , and given by 
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1 2/ρ ρ ρ= , and 2( )F
nk , F

nZ  are the eigenvalues and eigenfunctions of the two-point depth 

eigenvalue problem 2 2(( ) ( ) ) 0F F
nw k k w′′ + − =  on [ ,0]H− , where (0) ( ) 0w w H′= − = , 

( ) ( )F Fw h w h+ −− = − , ( ) ( )F Fw h w hρ+ −′ ′− = − , and Fk  is the z -dependent wavenumber at any 

Fr r≥ . We discretize this b.v.p. on Ω  by the standard Galerkin/finite element method with 
continuous, piecewise linear functions defined on a triangulation of Ω  with nodes on the 
interface J . The nonlocal b.c. (7) becomes a generalized natural b.c. at 2r R=  and is 
approximated by a discrete analog evaluated as a finite sum of all the propagating and the most 



 

significant evanescent modes. The method has been shown to be second order accurate in the 
spatial discretization parameter, [G], [M]. The basic finite element module is incorporated in the 
Fortran code FENL described in detail in [KD] (http://oalib.saic.com/Other/fenl). The code uses 
mesh generation techniques from the Modulef library, and appropriate preconditioned iterative 
solvers for indefinite, sparse, complex linear systems from QMRPACK, [FN]. 
 
 
4. THE CONSISTENT COUPLED MODE METHOD (CCMM) 
The problem (1)-(6) can be reformulated as a transmission problem in the bounded subdomain 

ID  with the aid of the following general representations of the acoustic field in ND  and FD ,  
respectively,  
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and by requiring the matching of the field and its normal derivative at the common vertical 
interfaces NI  and FI .  In formulas (8), the sets of numbers { }
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respectively, of Sturm-Liouville problems, obtained by separation of variables in the subdomains 
ND and FD .  More details about the associated depth problem, and its solution in the case of 

two homogeneous layers: ( ) 10 z hρ ρ< <− = , ( ) 10c r, z h c< <− = , ( ) 2H z hρ ρ− < <− = , ( )c r, H z h− < <− = 

2c= , can be found in [B]. The transmission problem admits a variational formulation, expressed 
by the stationarity of the functional, [AB], 
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The variational principle, 0δ =F , can be used to obtain an alternative, semi-discrete 
(Kantorovich) formulation of the problem in terms of local modes. This family of local basis 
functions is obtained by formulating and solving local, vertical Sturm-Liouville problems in the 
interval [ ]0H,− . The enhanced local-mode representation of the acoustic field ( )Ip r,z  in the 
variable-bathymetry/interface domain ID , developed in  [AB], reads as follows 
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where ( )nP r  denote the amplitudes of the modes, and the functions ( )nZ z;r , 1n ≥ , are 
obtained as the eigenfunctions of the following local, vertical eigenvalue  problem (defined for 
each N Fr r r< < ) : 
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in conjunction with the matching-interface conditions 
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However,  the local eigenfunctions ( )nZ z;r , 1n ≥ ,  are incompatible with the sloping interface 

condition (5), whenever ( ) 0dh r dr ≠ . To remedy this inconsistency an additional mode is 

introduced in [AB], denoted by ( ) ( )00
P r Z z;r  and called the sloping-interface mode. The 

vertical structure of the sloping-interface mode, ( )0Z z;r ,  is a continuous function satisfying the 
following conditions  
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In the series expansion (10), the first  0 n N< ≤  terms ( ) ( ){ } 1 2n n n , , . .N
P r Z z;r

=
, corresponding 

to  real horizontal eigenvalues ( 2 0nk > ), are the propagating modes, and the terms 

( ) ( ){ }n nP r Z z;r , 1 2n N ,N ,..= + + , corresponding to  imaginary  eigenvalues ( 2 0nk < ),  are  

the evanescent modes. The sloping-interface mode ( ) ( )00
P r Z z;r  is not needed when the 

interface is flat. Each term in the expansion (10) satisfies the free surface condition (2), the 
boundary condition (3) and the interface condition (4), individually. Thus, representation (10) 
renders all of them essential conditions in relation with the variational formulation. Using (10) in 
the variational principle, we obtain the following coupled-mode system of second-order ordinary 
differential equations, with respect to the mode amplitudes: 
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where all coefficients are defined in terms of  ( )nZ z;r  in N Fr r r< < . The system (14) contains 
an additional equation, associated with the additional sloping-interface mode, and produces 
solutions consistent with the interface conditions and the conservation of energy. Eq. (14) is 
supplemented by the following end conditions 
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5. NUMERICAL TESTS AND CONCLUSIONS 
Extensive comparisons between  FEM and CCMM, in the case of environments with a flat 
interface, have shown that both methods provide results in perfect agreement with the analytical 
solution, [B]. In this work we shall focus on two test cases, corresponding to a seamount and an 
upslope environment with very steep bathymetry, defined, respectively, by  
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where all distances are in meters. In both cases the   density and sound  speed of the seawater 
are taken constant 3

1 1gr/cmρ = , 1 1500c = m/s, and the density and sound  speed of the 

sediment 3
2 1 5. gr/cmρ = and 2 1700c = m/s. The source frequency  is taken to be 25Hz. In the 

first case, presented in Figs. 2 and 3, the pulsating source is located at 0 70mz = −  (near the 

interface), and in the second case, presented in Figs. 4 and 5, at 0 25mz = −  (near the free 

surface). The number of propagating modes in ND  is N=3.  Numerical results concerning  the 
Transmission Loss (TL in dB), as calculated by CCMM and FEM, respectively,  are compared in 
Figs. 2 and 4. In the case of the sea-mount, comparisons of the Transmission Loss,  at  
receiver’s depths RD=50m and at RD=SD=70m, are presented in Fig.3. In the case of the 
upslope environment, comparisons of the Transmission Loss  at  RD=SD=25m and at RD=90m 
are presented in Fig.5.  We can observe from these figures that the agreement between the two 
methods is very good, in the whole domain, although the computational requirements of the 
FEM, as compared to CCMM, are significantly larger. On the other hand, the FEM, is inherently 
more flexible to treat localized inhomogeneities. Thus, after further comparison and validation, 
FEM and CCMM  can be used to complement each other, in order to treat difficult situations, 
such as acoustic scattering problems from localized scatterers embedded in nonhomogeneous 
waveguides.   



 

 
Fig.2  Comparison of FEM and CCEM  in the case of a seamount. Transmission Loss (in dB). 
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Fig.3 Transmission Loss (in dB) at RD=50m and at RD=SD=70m in the case of a seamount 
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