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Abstract

We consider the problem of imaging extended reflectors in three-dimensional acoustic waveguides using

a planar array that is parallel to the waveguide’s cross-section. Our data is the multiple-frequency array

response matrix. To form an image we back-propagate a projection of the data on the propagating modes

in the waveguide. The projection operator is adequately defined for any array aperture size and shape that

covers fully or partially the waveguide cross-section. The properties of the imaging method are analyzed

theoretically and its effectiveness is assessed by numerical experiments for scatterers and arrays of varying

shape and size.

1 Introduction

We consider the problem of imaging extended reflectors in a three-dimensional, cylindrical, locally-perturbed

acoustic waveguide. We examine two waveguide geometries: the infinite waveguide, in which the waveguide

axis extends to infinity in both directions, and the terminating one where its axis is semi-infinite. These two

geometries are illustrated in Figures 1 and 2. The remote sensing configuration consists of a single active planar

array, denoted by A, that is composed of N transducers which can be used as transmitters and receivers.

The array is posed in the unperturbed part of the waveguide and may span the entire left cross-section of

the waveguide, denoted by C, or just a part of it. We refer to the former as the full array-aperture case

and to the latter as the partial. Our data, for an angular frequency ωl, are given in the form of an N × N

complex symmetric matrix [Π(~xs, ~xr;ωl)], where the subscripts “s, r” denote source and receiver coordinates,

respectively, and l = 1, . . . , Nf , where Nf is the number of available frequencies. Specifically, the element

Π(~xs, ~xr;ωl) is the response recorded at ~xr when a unit amplitude signal at frequency ωl is sent from a point

source at ~xs.

Imaging in two-dimensional or three-dimensional infinite waveguides that are bounded in one direction has

been traditionally related with applications in underwater acoustics, see, e.g., Refs. [8, 14, 16, 17, 22, 29].

Moreover, imaging in infinite or terminating waveguides that are bounded in two directions finds application

in nondestructive testing[9, 12, 30] and in imaging in tunnels or pipes.[2, 20, 23, 25] Among the imaging

methodologies that are widely used in waveguides with known and relatively simple geometry we refer to

the linear sampling method (LSM),[3, 6, 7, 18] the factorization method,[1, 4] and reverse time migration

methods or, their equivalent in the frequency domain, phase conjugation methods.[5, 15] In particular, Bourgeois

and Lunéville[6] use a modal formulation of the LSM in order to detect sound-soft obstacles in an infinite

cylindrical waveguide with sound-hard walls, and in a later work[7] they also apply modal formulations of the

LSM and the factorization method, in the same waveguide setting, to reconstruct sound-soft or sound-hard

cracks. Let us recall here that a boundary is described as being sound-soft (or sound-hard) whenever a Dirichlet

(or Neumann) boundary condition is imposed. Monk and Selgas[18] employ the LSM and the Reciprocity Gap

Method in order to detect penetrable, possibly anisotropic, scatterers in an infinite tubular waveguide that are

allowed to touch the boundary of the waveguide. In a recent work,[3] Borcea, Cakoni and Meng introduce a

linear sampling approach to detect local wall deformations and localized scatterers in a terminating tubular
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waveguide with sound-hard walls. Arens, Gintides and Lechleiter[1] consider an infinite three-dimensional

planar homogeneous waveguide to model the ocean environment, and they propose a factorization method for

reconstructing penetrable scatterers. In another recent work, Borcea and Meng[4] present a comparative study

of a factorization and a migration method for imaging sound-soft obstacles in a terminating acoustic waveguide

with sound-hard walls.

One of the main characteristics in imaging a scatterer in a waveguide that is bounded in one or two directions

is that, for a fixed frequency, there exists a specific number of modes that propagate at long distances and an

infinite number of the so-called evanescent modes that rapidly decay with the propagating distance. Therefore,

in practice, part of the information that is carried in the evanescent part of the wave field cannot be measured

far from the scatterer, thus dictating that methods that are developed for imaging in waveguides should rely

only on the propagating modes.[10, 19, 26]. Towards this direction, Dediu and McLaughlin[10] have proposed

a method to recover weak inhomogeneities in an infinite strip that makes use of the eigenpairs of the far-field

matrix in order to represent the solution of the linearized inverse scattering problem in terms of the propagating

modes of the waveguide. Pinçon and Ramdani[19] study the problem of selective focusing on several small

scatterers embedded in a two-dimensional infinite strip, by means of a time-reversal technique and the analysis

of the spectral properties of the time-reversal operator. In our earlier work[26] we considered the problem of

selective imaging of extended reflectors in a two-dimensional infinite strip with a full-aperture array and we have

introduced a migration method that uses projections on low rank subspaces of a weighted modal projection of

the array response matrix Π.

In this paper, following the methodology developed in our previous work,[28] we define an imaging functional

that hinges upon the back-propagation of an appropriate projection of the array response matrix Π. The

projection is fairly straightforward in the full-aperture case (A = C). Let us denote by {Φn}∞n=1 the usual

orthonormal basis of L2(C) that consists of the orthonormal eigenfunctions of the negative transverse Laplacian

in C. We then project Π onto the M first eigenfunctions Φi, where M is the number of propagating modes.

It turns out that the proposed imaging functional exhibits some interesting properties. For example, in a

terminating waveguide we may show that the resulting image is directly related with the waveguide Green’s

function. Specifically, assuming that A is a continuous ideal array, we may prove that the image of a point

source (or a point scatterer) is equal to (or to the square of) the imaginary part of the Green’s function.

In this paper we consider the problem of imaging with partial aperture data. This is an interesting problem

from a practical point of view since, in many realistic applications, we are rarely able to use arrays that entirely

cover the waveguide cross-section. From the theoretical point of view, the main difficulty in the partial array-

aperture case (A ⊂ C), lies in the fact that the Φn’s are no longer orthogonal along the array. Our main

contribution in this work is the construction of a finite-dimensional subspace of orthogonal functions with

energy concentration properties, for two-dimensional planar arrays A of general shape.

Specifically, we introduce appropriate functions Sj , that are linear combinations of the eigenfunctions Φn

with coefficients that depend on the eigenvalues and corresponding eigenvectors of the M ×M real symmetric

(Gram) matrix Aarr, whose (i, j) element is the integral over A of the product Φi(·)Φj(·). The Sj are orthogonal

along both A and C, and we use them, instead of the Φn’s, in order to project Π. Let us note that in the

case of a two-dimensional waveguide, the array A is just a line segment posed perpendicular to the waveguide

axis, and the matrix Aarr has a special structure. It is a Toeplitz-minus-Hankel matrix and this fact allows

us to fully characterize its spectral properties and, also, identify the functions Sj as prolate or prolate-like

wavefunctions.[27] The current three-dimensional setting is more interesting since the array instead of being

just a segment can be a general planar array of arbitrary shape. In this case although we do not have an

explicit characterization of the eigenpairs of the matrix Aarr and of the functions Sj , we can prove that all the

eigenvalues of Aarr lie in [0, 1], and that the functions Sj exhibit energy concentration properties similar to those

of the prolates.
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Projecting the data Π using the Sj functions has important implications in imaging. We can show for

example, that as long as the minimum eigenvalue of the matrix Aarr remains above a threshold, then we do not

lose any information and we may recover the same image as if we were using a full aperture array. This result

holds under the assumptions of the linearized Born approximation. Moreover, a careful numerical investigation

indicates that the number of the eigenvalues of Aarr that are close to one is approximately equal to M |A|/|C|,
where | · | denotes area, irrespectively of the shape of the array, thus extending to this case analogous results

for the two-dimensional waveguide.[26, 27]

The performance of the proposed imaging method is assessed with numerical experiments where the array

response matrix is created by means of the linearized Born approximation. We consider a uniform waveguide

with rectangular cross-section that allows us to have an analytical expression for the Green’s function, thus

avoiding to solve numerically the full wave equation in three dimensions. We treat the full- and partial-aperture

cases and experiment with various array sizes and shapes. We also investigate the robustness of the method to

measurement noise. The use of multiple frequencies is also examined and reveals a significant improvement in

the effectiveness of our method, allowing us to create good images with quite small arrays.

The paper is organized as follows. In Section 2 we present the problem setup. Section 3 is devoted to the

description of our imaging approach in the case of a full-aperture array. In Section 4 we examine the partial-

aperture case, and explore the properties of the matrix Aarr and the behavior of the functions Sj . Finally, in

Section 5 we assess the performance of our approach with numerical simulations for various scatterer and array

geometries.

2 Problem setup

In this work, we study the problem of imaging an extended reflector embedded in a three-dimensional cylindrical,

locally perturbed waveguide using an active planar array that is parallel to the waveguide cross-section. We

consider a three-dimensional Cartesian coordinate system ~x = (z, z′) ∈ R3, and we assume that the axis

of the unperturbed waveguide is parallel to the z–axis, hereinafter referred to as the range. The cross-range

coordinates z′ = (x, y) lie on the transverse xy–plane, and x is taken to be positive downwards. In what follows,

we distinguish two cases for the physical domain: (i) The infinite waveguide, where waves travel infinitely as

the range coordinate z → ±∞, and (ii) the terminating waveguide, i.e. a semi-infinite waveguide where waves

propagate infinitely only as z → −∞.

Specifically, let Ωi be a three-dimensional infinite waveguide, as shown in Figure 1, that consists of three

parts: two semi-infinite cylindrical waveguides ΩL− and ΩL+ of constant cross-section C for ranges z < L− and

z > L+, and a bounded domain Ωi
L for L− < z < L+ where the cross-section may vary with range. Thus

Ωi := ΩL− ∪ Ωi
L ∪ ΩL+ . Moreover, we assume that the cross-section C is a bounded, Lipschitz domain on the

transverse xy–plane, and that ΩL± are filled with a homogeneous medium, while the medium in the intermediate

region Ωi
L may be inhomogeneous.

Figure 1: Schematic representation of an infinite three-dimensional waveguide Ωi := ΩL− ∪ Ωi
L ∪ ΩL+ .

3



Analogously, the terminating waveguide Ωt (see Figure 2) is a semi-infinite three-dimensional waveguide

consisting of two parts: a semi-infinite cylindrical waveguide ΩL− (defined as before for range z < L), and a

bounded domain Ωt
L where the cross-section may vary with range and/or the medium may be inhomogeneous.

In this case we have Ωt := ΩL− ∪ Ωt
L.

Figure 2: Schematic representation of a terminating three-dimensional waveguide Ωt := ΩL− ∪ Ωt
L.

In order to simplify things, we restrict ourselves to the acoustic case and assume that the waveguide has a

sound-soft boundary. However, our approach generalizes to other boundary conditions as well. An active planar

array A that contains N transducers is placed parallel to the waveguide’s cross-section at range z = za in ΩL− .

The array is composed of N transducers that act as sources and receivers and are assumed to be uniformly

distributed. Specifically, let A be a two-dimensional point lattice where each lattice cell is a square of sidelength

h and the transducers are located at the lattice points. We will examine two cases: a) A full-aperture array,

that is an array that spans the entire cross-section C, i.e. A ≡ (hZ2 ∩ C), and b) a partial-aperture array where

the array spans only part of C, i.e. A ⊂ (hZ2 ∩ C). Moreover, h is considered to be relatively small, typically a

fraction of the wavelength λ. In these two configurations our goal is to create images that will allow us to locate

an extended reflector O that is contained somewhere in Ωi
L (or Ωt

L) in the case of the infinite (or terminating)

waveguide. The term extended indicates that the reflector is comparable in size to λ.

Each element in the array acts as a point-source that emits a continuous time-harmonic signal of angular

frequency ω. Therefore, the total field due to a point-source located, say, at ~xs satisfies the Helmholtz equation

−∆ptot(~x;ω)− k2η(~x) ptot(~x;ω) = δ(~x− ~xs), ~x ∈ Ω \ O, (1)

where k = ω/c0 is the (real) wavenumber, η(~x) = c20/c
2(~x) is the index of refraction, and Ω = Ωi (or Ωt) in

the case of the infinite (or terminating) waveguide. Equation (1) is supplemented with homogeneous Dirichlet

boundary conditions on ∂Ω, a Dirichlet or a Neumann boundary condition on ∂O depending whether the scat-

terer is assumed to be sound-soft or sound-hard, respectively, and an appropriate radiation condition ensuring

that the field is outgoing as the range tends to ±∞ (or −∞) in the case where Ω = Ωi (or Ωt).

Moreover, the incident field at a point ~x ∈ Ω, due to a point-source situated at ~xs and for a single frequency

ω, is given by the Green’s function, denoted by G(~x, ~xs;ω). Hence G(~x, ~xs;ω) solves

−∆G(~x, ~xs;ω)− k2η(~x)G(~x, ~xs;ω) = δ(~x− ~xs), ~x ∈ Ω, (2)

along with Dirichlet boundary conditions on ∂Ω, and the appropriate radiation condition.

In the homogeneous cylindrical parts ΩL± of the waveguide, with constant cross-section C, we consider the

Dirichlet eigenvalue problem for the negative transverse Laplacian, i.e.

−∆z
′Φ = µΦ in C,

Φ = 0 on ∂C.
(3)

It is well-known that the spectrum of −∆z
′ is discrete. The eigenvalues µn are positive 0 < µ1 ≤ µ2 ≤ . . . → ∞,

and the corresponding orthonormal eigenfunctions Φn form a complete, orthonormal basis in L2(C). From now
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on, let M be the number of propagating modes in ΩL± , i.e. an index such that the constant wavenumber k2

satisfies

µM < k2 < µM+1,

and let

βn :=

{ √
k2 − µn, 1 ≤ n ≤ M,

i
√
µn − k2, n ≥ M + 1.

(4)

We assume that the data that we have in our disposal for imaging consist of the array measurements given

in the form of a matrix, denoted Π, which will be referred to as the array response matrix. Specifically, Π is an

N × N complex symmetric (not Hermitian) matrix whose (r, s)-entry contains the wave field recorded at the

r-th receiver, located at ~xr, when the s-th source, placed at ~xs, emits a time-harmonic signal. In particular, we

shall use the array response matrix for the scattered field that is due to the presence of an extended reflector O
located somewhere in Ωi

L or in Ωt
L. As usual, the scattered field is determined by subtracting the incident field

from the total field.

In order to successfully image a reflector we have to define an appropriate imaging functional and a search

domain S ⊂ Ωi
L (or S ⊂ Ωt

L). We discretize S with a (usually rectangular) three-dimensional grid and we

evaluate the imaging functional at the grid points, see for example Figure 3 for the terminating waveguide case.

Then we graphically display these values to form an image that is expected to exhibit peaks at the location of

the scatterer.

C

A

z = za

x

z

y

�y
s

S

Figure 3: Schematic representation of the discretization of a search domain in a terminating three-dimensional

waveguide Ωt.

3 Imaging with a full-aperture array

In this section we consider the case of a terminating waveguide as shown in Figure 2. To motivate our imaging

process we start with the problem of detecting the location of a point source of unit strength that transmits a

signal which is received by the elements of a passive planar arrayA that covers the entire waveguide cross-section

C. This problem is commonly referred to as the passive imaging problem. In the second part of this section we

examine the active imaging problem where the objective is to detect the position of a single scatterer with unit

reflectivity. In this case A is an active source-receiver array. In both cases the array A is placed at range z = za

(za < L), consists of N transducers and, as already mentioned in Section 2, is defined as A ≡ (hZ2 ∩ C). In

order to provide some insight into the properties of the imaging functional that we are going to introduce next,

we will first consider the idealized case of a continuous array that entirely covers C.

3.1 The passive imaging problem

In our earlier work[28] we have proposed an imaging approach for the passive imaging problem in the case

of a two-dimensional terminating waveguide. The extension to the current three-dimensional setting is fairly

straightforward hence here we will briefly summarize its main ingredients.
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The proposed imaging functional is motivated by phase conjugation and its well-known time-domain equiv-

alent which is time reversal. The basic idea is the following: For the passive problem of imaging a single point

source located at ~xs = (zs, z
′
s), the response matrix turns out to be an N × 1 vector whose r-th component is

simply the Green’s function evaluated at an arbitrary point ~xr = (za, z
′
r) that lies on the surface of the ideal

array A, i.e.

Π(~xr;ω) = G(~xr, ~xs;ω). (5)

To simplify our notation, as long as we consider a monochromatic source we drop parameter ω from the Green’s

function, the array response matrix, etc. Hereinafter, the dependence in ω will be explicitly displayed whenever

we refer to multifrequency data.

Next, assuming that the array is capable of recording the field and its normal derivative, we conjugate the

field and retransmit it to a search point ~ys ∈ S according to Huygen’s principle that is expressed mathematically

via the Helmholtz-Kirchhoff integral.[15, 17] Thus we may define the imaging functional

I(~ys) :=

∫

A

(
G(~xr, ~xs)∇G(~xr, ~y

s)−G(~xr, ~y
s)∇G(~xr, ~xs)

)
· n̂ dz′, (6)

where n̂ is the outward unit normal vector to A. As we shall see in a while this functional possesses interesting

theoretical properties.

This procedure is well established in the case of a closed, ideal array that surrounds the source,[15, 17]

and Porter[21] has proven that in this case and for a lossless medium (i.e. when k2η(~x) is real) it holds that

I(~ys) = 2i Im {Ĝ(~ys, ~xs)}.
Of course, it is well-known that it is very difficult to create an array that is able to record both the field

and its normal derivative. However, in our case of a terminating waveguide and for an array that does not

surround the source but rather it fully covers the waveguide cross-section, we may define an imaging functional

that only requires the knowledge of the field and not of its derivatives. The definition relies on the following

Kirchhoff-Helmholtz type identity:

Proposition 1 (Kirchhoff-Helmholtz identity) Let Ωt be the terminating waveguide that we have described

in Section 2 and is shown in Figure 2. For any za < L, by slightly abusing the notation, let A = {za} × C be

an artificial boundary posed at range z = za and Ωza be the bounded part of the waveguide Ωt that is defined for

range z > za. Let ~x1, ~x2 ∈ Ωza . Then

G(~x1, ~x2)−G(~x1, ~x2) =

∫

A

(
G(~y, ~x1)∇G(~y, ~x2)−G(~y, ~x2)∇G(~y, ~x1)

)
· n̂ dz′, (7)

where n̂ is the outward unit normal vector to A. Moreover,

G(~x1, ~x2)−G(~x1, ~x2) = 2i

M∑

i=1

βiGi(za, ~x1)Gi(za, ~x2), (8)

where Gi(za, ·) is the i-th Fourier coefficient of the Green’s function with respect to the orthonormal basis

{Φn}∞n=1 of L2(C), i.e.,
Gi(za, ·) =

∫

C

G
(
(za, z

′), ·
)
Φi(z

′) dz′, i = 1, . . . ,M. (9)

In Ref. [28], Appendix A, we have proven the analogue of Proposition 1 in the case of a two-dimensional

terminating waveguide. The proof uses the reciprocity relation of the Green’s function and properly exploits

properties of the Dirichlet-to-Neumann map on the artificial boundary A. The generalization to the present

three-dimensional setting is straightforward hence we omit it.
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Thus, in view of Proposition 1 and (5), we define our passive imaging functional, for a generic response

matrix Π(~xr) = Π(za, z
′
r), as

Ip(~y s) =

M∑

i=1

βiQi Gi(za, ~y
s), (10)

where the superscript ‘p’ denotes the passive imaging case,

Qi =

∫

A

Π(za, z
′
r)Φi(z

′
r) dz

′
r, i = 1, . . . ,M, (11)

is the projection of Π on the M -first eigenfunctions Φi, with M being the number of propagating modes in ΩL− ,

and βi are the horizontal wavenumbers given by (4).

Note that in the the special case where Π(~xr) has the form shown in (5), i.e. it incorporates the field due to a

point source of unit strength located at ~xs, then we may prove the following lemma, that verifies the previously

mentioned result by Porter[21] in our case.

Lemma 1 (Point source imaging) For a point source of unit strength located at ~xs corresponding to array

data Π(~xr) as in (5), the passive imaging functional Ip(~ys) defined by (10)-(11) is equal to the imaginary part

of the Green’s function from ~xs to ~ys, i.e., we have

Ip(~ys) = ImG(~y s, ~xs). (12)

Lemma 1 is an interesting result which tells us that in this case the quality of the focusing of the proposed

imaging functional is controlled by the imaginary part of the Green’s function in the waveguide. The proof is

an immediate consequence of the Kirchhoff-Helmholtz identity that is stated in Proposition 1.

To sum up, the imaging process for the passive imaging case can be written in the form of the following

algorithm.

Algorithm 1 (Passive Imaging – Full-aperture array)

Given the array data Π(~xr), r = 1, . . . , N :

(a) We project the recorded field Π(~xr) onto the M -first eigenfunctions Φi, i = 1, . . . ,M , of the negative

transverse Laplacian in C, see (3), i.e.

Qi =

∫

A

Π(za, z
′
r)Φi(z

′
r) dz

′
r, i = 1, . . . ,M, (13)

where M is the number of propagating modes in ΩL−.

(b) For each ~y s ∈ S we evaluate the imaging functional

Ip(~y s) =
M∑

i=1

βi Qi Gi(za, ~y
s), (14)

where Gi are defined in (9).

Remark 1 In the definition of the projected vector Q, see (13), we treat A as an ideal continuous array.

However, in practice, A consists of N discrete elements therefore the definition is modified as

Qi := h2
N∑

r=1

Π(za, z
′
r)Φi(z

′
r), i = 1, . . . ,M,

where h is the lattice parameter.
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3.2 The active imaging problem

Next, we deal with the active imaging problem. Our objective is to detect the position ~x∗ = (z∗, z
′
∗) of a

single point scatterer with unit reflectivity. Now A is an active source-receiver array and the (r, s) entry of

the associated array response matrix is specified by the scattered field recorded at ~xr when the point reflector

at ~x∗ is illuminated by a signal of unit strength emitted from a point source at ~xs. Therefore, Π(~xr, ~xs) =

k2 G(~x∗, ~xs)G(~xr, ~x∗), and suppressing the multiplicative constant k2 we may assume that

Π(~xr, ~xs) = G(~x∗, ~xs)G(~xr, ~x∗). (15)

The imaging procedure in this case, under the assumption of a continuous array is described in Algorithm 2.

Algorithm 2 (Active Imaging – Full-aperture array)

Given the array data Π(~xr, ~xs), r, s = 1, . . . , N :

(a) We define the projected response matrix Q by

Qij =

∫

A

∫

A

Π(~xr, ~xs)Φi(z
′
s)Φj(z

′
r) dz

′
sdz

′
r, i, j = 1, . . . ,M. (16)

(b) For each ~y s ∈ S we evaluate the imaging functional

Ia(~y s) =

M∑

i=1

M∑

j=1

βi βj Qij Gi(za, ~y
s) Gj(za, ~y

s), (17)

where the superscript ‘a’ denotes the active imaging case and Gi(za, ·) are as in (9).

Note that the definitions (16) and (17) concern a generic reflector. In the special case where the reflector is

a point scatterer located at ~x∗, and the array response matrix is given by (15), it is easy to show the following

lemma (the proof follows from the Kirchhoff-Helmholtz identity).

Lemma 2 (Point reflector imaging) For a point scatterer with unit reflectivity located at ~x∗, corresponding

to array data Π(~xr, ~xs) as in (15), the active imaging functional Ia(~y s) defined in Algorithm 2 is equal to the

square of the imaginary part of the Green’s function from ~x∗ to ~ys, i.e., we have

Ia(~y s) =
(
Im

(
G(~y s, ~x∗)

))2

. (18)

Lemma 2 characterizes the point spread function of the imaging functional Ia(~y s). As in the passive case the

quality of the focusing of the proposed imaging functional is controlled by the imaginary part of the Green’s

function in the waveguide.

4 Imaging with a partial-aperture array

In this section we concentrate on the main subject of this paper which is the study of the imaging problem that

is stated in Section 2 with an array that spans only part of the waveguide’s cross-section C. The approach that

we have briefly discussed in the preceding section for the full-aperture case, needs to be modified in order to

create images of good quality with smaller arrays that do not entirely cover the waveguide cross-section. The

main reason for this, is that in the partial aperture case the eigenfunctions Φi, i = 1, . . . ,M , of the negative

transverse Dirichlet-Laplacian that we have employed in (13) and (16) in order to define the projected matrix

Q are no longer orthonormal along the array A.

In what follows we will construct a finite-dimensional subspace of appropriately chosen functions Sj(z
′),

z
′ ∈ C, that possess the interesting property of being doubly orthogonal, i.e. orthogonal along the array A
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and along the cross-section C, and exhibit very good concentration properties. Then we are going to use these

functions in order to project the array response matrix Π.

As we shall immediately see, the real symmetric matrix Aarr with entries

(Aarr)ij =

∫

A

Φi(z
′)Φj(z

′) dz′, i, j = 1, . . . ,M, (19)

plays a key role in this construction.

4.1 Properties of the matrix A
arr

Let {νn} denote the eigenvalues of the matrix Aarr that is defined in (19) (written in decreasing order) and

{w(n)} be the corresponding orthonormal eigenvectors. From now on let W denote the M × M orthogonal

matrix W = [w(1), . . . ,w(M)]. It is well-known that the eigenvalues νn are real. Moreover, the following lemma

holds:

Lemma 3 The matrix Aarr is positive semi-definite and for all n = 1, . . . ,M , it holds that 0 ≤ νn ≤ 1.

Proof. Let v = (v1, . . . , vM )T ∈ RM , v 6= 0, and

αv(z
′) =

M∑

k=1

vk Φk(z
′), z

′ ∈ C.

Then

v
TAarrv =

M∑

i=1

M∑

j=1

vivj(Aarr)ij =
M∑

i=1

M∑

j=1

vivj

∫

A

Φi(z
′)Φj(z

′) dz′

=

∫

A

M∑

i=1

viΦi(z
′)

M∑

j=1

vjΦj(z
′) dz′ =

∫

A

α2
v
(z′) dz′ ≥ 0.

Moreover,
∫

A

α2
v
(z′) dz′ ≤

∫

C

α2
v
(z′) dz′ =

M∑

i=1

v2i =: ‖v‖22,

hence

0 ≤ v
TAarrv ≤ ‖v‖22, for all v 6= 0. (20)

Finally, from the well-known Rayleigh quotient theorem,[13, p. 235] it also holds that the maximum eigenvalue

ν1 satisfies:

ν1 = max
v 6=0

v
TAarrv

‖v‖22
(20)

≤ 1.

�

Remark 2 For a two-dimensional waveguide of width D, the vertical array is simply an interval of width

larr ≤ D, and the matrix Aarr has a very special structure, it is a Toeplitz-minus-Hankel matrix. Then it may

be shown that its eigenvalues cluster near 0 and 1, and the number of ‘significant’ (in the sense that they are

not close to zero) eigenvalues is approximately equal to

[
M

larr
D

]
≈

[ larr
λ/2

]
,

where λ is the probe wavelength. Furthermore, the eigenvectors may be identified as discrete prolate or prolate-

like wavefunctions.[27]
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In view of the above remark we have numerically investigated whether these properties still hold in the

current setting where the array is a two-dimensional region. Our results indicate that the eigenvalues of Aarr

still cluster near 0 and 1, and the value M · |A|/|C|, where |A| and |C| denote the areas of A and C, respectively,
provides a good estimate for the number of the “most significant” among them.

To illustrate our observations we consider the following example: Let the cross-section C of the unperturbed

part of the waveguide be the rectangle C = [0, D] × [0,W ], where D = 10λ0, W = 20λ0, and λ0 is a reference

wavelength that corresponds to a reference wavenumber k0 = π/10. Then |C| = D · W is the area of the

rectangular cross-section. We consider arrays of four different shapes: A rectangle, an ellipse, a quadrifolium,

and an annular ellipse, as shown in the left column of Figure 4 from top to bottom, respectively. Specifically,

the arrays that are shown there cover approximately 40% of the area |C|. In the second to fourth columns of

Figure 4 we plot the eigenvalue distribution of the M × M matrix Aarr for these four array types, for arrays

of different area. Recall that M is the number of propagating modes and in this example we consider a single

frequency that corresponds to a wavenumber k = 0.9875k0, which leads to the value M = 584. Specifically,

the second column corresponds to arrays with area approximately equal to 40% of |C|, in the third column

|A| ≈ 0.25|C|, while in the fourth one |A| ≈ 0.04|C|. Note that in the fourth column we plot just the first

50 (larger) eigenvalues since the rest decrease rapidly to zero. In all these plots a vertical line (typed in red)

indicates the value M|A|
|C| . As one may immediately verify, in all four array types it seems that, irrespective of

the shape of the array, the value M · |A|/|C| is an accurate estimate for the number of “significant” eigenvalues

of Aarr.

Now we are in a position to introduce the functions Sj that we are going to use in order to project the array

response matrix Π.

4.2 Definition and properties of the functions Sj

Definition 1 For any ε ∈ (0, 1), let Mε be the largest index in {1, 2, . . . ,M} such that νMε
≥ ε.

Then for z
′ ∈ C we define the functions

Sj(z
′) =

1

νj

M∑

i=1

w
(j)
i Φi(z

′), j = 1, 2, . . . ,Mε, (21)

where w
(j)
i , i = 1, . . . ,M , are the components of the eigenvector w

(j) that corresponds to the eigenvalue νj of

the matrix Aarr.

We also define Wε as the M ×Mε matrix with columns the eigenvectors of the matrix Aarr:

Wε = [w(1), . . . ,w(Mε)]. (22)

The functions Sj possess interesting properties that are summarized in the following proposition.

Proposition 2 The functions Sj, j = 1, . . . ,Mε, are doubly orthogonal in the sense that

(Sk, Sl)L2(C) =
1

νkνl
δkl and (Sk, Sl)L2(A) =

1

νk
δkl,

where (·, ·) denotes the usual L2–inner product and δkl is the Kronecker delta. Moreover, they exhibit maximum

fractional concentration of energy in A. Specifically, it holds that

‖Sk‖L2(A)

‖Sk‖L2(C)
= ν

1/2
k , k = 1, . . . ,Mε.
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Figure 4: Array shape (left column) and singular values of Aarr (columns 2–4). Array shape from top to bottom:

Rectangle, ellipse, quadrifolium and annular ellipse. The eigenvalues shown in columns 2–4 correspond to arrays

that cover approximately 40%, 25% and 4% of |C|, respectively. The vertical line (typed in red) in columns 2–4

indicates the value M|A|
|C| .

Proof. The first orthogonality relation results from the orthonormality of the eigenfunctions {Φi} and of the

eigenvectors {w(j)}. Indeed,

(Sk, Sl)L2(C) =
1

νkνl

∫

C

M∑

i=1

w
(k)
i Φi(z

′)
M∑

j=1

w
(l)
j Φj(z

′) dz′

=
1

νkνl

M∑

i=1

M∑

j=1

w
(k)
i w

(l)
j

∫

C

Φi(z
′)Φj(z

′) dz′

=
1

νkνl

M∑

i=1

M∑

j=1

w
(k)
i w

(l)
j δij =

1

νkνl

M∑

i=1

w
(k)
i w

(l)
i =

1

νkνl
δkl.

For the second orthogonality relation we simply use that {νl,w(l)} is an eigenpair of the matrix Aarr and the

orthonormality of the eigenvectors {w(j)}.

(Sk, Sl)L2(A) =
1

νkνl

M∑

i=1

M∑

j=1

w
(k)
i w

(l)
j

∫

A

Φi(z
′)Φj(z

′) dz′

=
1

νkνl

M∑

i=1

w
(k)
i

M∑

j=1

(Aarr)ijw
(l)
j =

1

νkνl

M∑

i=1

νl w
(k)
i w

(l)
i =

1

νk
δkl.
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The relation
‖Sk‖L2(A)

‖Sk‖L2(C)
= ν

1/2
k is an immediate consequence of the above two relations. �

In order to illustrate the behavior of the Sj’s, we consider the same configuration as in Figure 4, and we

plot in Figure 5 the first eight functions Sj(z
′), j = 1, 2, . . . , 8, for the four different array-types. Here the

area of the arrays is approximately equal to 0.04|C|, and the corresponding eigenvalues are shown in the last

column of Figure 4. For the rectangle and the ellipse the first eight eigenvalues are larger than 0.99, while for

the quadrifolium and the annular ellipse they remain above 0.93. As expected in view of Proposition 2, the Sj ,

for j = 1, . . . , 8, are mainly supported in the interior of the array.

Finally, to provide some idea of the way the Sj behave as j increases, we plot in Figure 6 the functions S20

for the same four arrays. Now, the corresponding eigenvalues for the rectangle, the ellipse, the quadrifolium and

the annular ellipse are 0.7435, 0.6866, 0.6393 and 0.7049, respectively. We note that, in each case, the values of

Sj seem to peak towards the boundary of the array and some oscillations are also visible in the exterior of the

array. We have also checked that for larger values of j, that correspond to smaller eigenvalues, the corresponding

Sj are mainly supported in the exterior of the array.

Next, we present the proposed algorithms for imaging with planar arrays of general shape that partially

cover the waveguide’s cross-section.

4.3 Algorithms for imaging with a partial-aperture array

In the case of passive imaging, Algorithm 1 is modified as follows:

Algorithm 3 (Passive Imaging – Partial-aperture array) Given the data vector Π(~xr) and letting Si,

i = 1, . . . ,Mε, and Wε be as in Definition 1:

(a) We construct the Mε × 1 vector S by projecting the recorded field Π(~xr) onto the Mε-first functions Si,

i = 1, . . . ,Mε,

Si =

∫

A

Π(~xr)Si(z
′
r) dz

′
r, i = 1, . . . ,Mε, (23)

and we then define the M × 1 vector Q by

Q = Wε S. (24)

(b) For each ~y s ∈ S we compute the imaging functional given in (14) and we graphically display the modulus

of these values.

In the case of active imaging, Algorithm 2 takes the form:

Algorithm 4 (Active Imaging – Partial-aperture array)

Given the N ×N array response matrix Π and letting Si, i = 1, . . . ,Mε, and Wε be as in Definition 1:

(a) We compute the M ×M projected matrix Q as follows:

First, we construct the Mε ×Mε matrix S with entries

Sij =

∫

A

∫

A

Π(~xr, ~xs)Si(z
′
s)Sj(z

′
r) dz

′
s dz

′
r, i, j = 1, . . . ,Mε, (25)

and, then the M ×M matrix Q by

Q = Wε SW
T
ε . (26)

(b) For each ~y s ∈ S we compute the imaging functional given in (17) and we graphically display the modulus

of these values.
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Figure 5: Top to bottom: The first eight functions Sj(z
′), j = 1, . . . , 8, for the four arrays, i.e. (from left to

right) the rectangle, the ellipse, the quadrifolium and the annular ellipse. In all cases |A| ≈ 0.04|C|.
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Figure 6: Left to right: The function S20(z
′) for arrays that have the shape of a rectangle, an ellipse, a

quadrifolium and an annular ellipse. In all cases |A| ≈ 0.04|C|.

Let us note that in the full array case (A ≡ C) the Φj are orthonormal along A, hence Aarr is just the

identity matrix, Sj = Φj and, as a result, the projected response matrix Q is the same as in (13) and (16) for

the passive and the active case, respectively. Thus, in practice, we always use Algorithms 3 and 4 for imaging,

setting aside if the array is full or partial.

Moreover, notice that we use the same algorithms for both waveguide geometries, i.e. the terminating and

the infinite waveguide. Of course, in the infinite waveguide it is no longer true that the point spread function

is determined by the imaginary part of the Green’s function. In other words, results (12) and (18) that we

have obtained for the terminating case do not hold in the infinite waveguide. (These results may be proven

true if we consider an additional full-aperture array located in ΩL+ .) However, a numerical investigation of the

point spread function, and all the numerical experiments that we have performed, confirm that this imaging

functional provides good reconstructions of the size and the shape of the scatterer when a single array is used

in the infinite waveguide. Some of these results will be presented in Section 5.

We close this section with some important observations concerning these imaging algorithms.

4.4 Partial aperture imaging properties.

Assuming the linearized Born approximation for the scattered field, we can show that the image that we

obtain with a partial-aperture array is the same as the one derived with a full-aperture array as long as all

the eigenvalues νj of the matrix Aarr are positive. To see this, let us consider a single point scatterer of unit

reflectivity that is located in a terminating waveguide Ωt, say at ~x∗ = (z∗, z
′
∗) ∈ ΩL+ . Moreover, we assume

that all the eigenvalues νj of the matrix Aarr are positive, thus allowing us to consider that Mε = M and

Wε = W . Finally, let the array A be located at range z = za ≪ L, so that the evanescent part of the wave

field may be neglected. Then it is quite easy to prove that the projected array response matrix Q defined by

(25) and (26) for a partial aperture array is equal to the projected matrix Q for an array that spans the entire

cross-section C. The proof relies on the fact that the Green’s function G(~x, ~x∗) for a point ~x = (z, z′) ∈ ΩL−

may be approximated by a linear combination of the first M eigenfunctions Φi(z
′), i = 1, . . . ,M , on the easily

derived property ∫

A

Sk(z
′)Φm(z′) dz′ = w(k)

m , (27)

and on the orthogonality of the matrixW . The extension of the proof from the two-dimensional (see Proposition

3.4 in Ref. [28]) to the three-dimensional case is immediate. This is also true for an extended scatterer under

the Born approximation as in this case the field can be written as a superposition of point scatterers’ fields.

However, this result holds only in an ideal setting, e.g. under the hypothesis of a continuous array and

assuming that our computations are ‘exact’, i.e. they are performed with infinite precision. As we observed in

the two-dimensional waveguide, [27] in practice the result remains true only for arrays that cover at least 50% of
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the waveguide’s cross section while in three dimensions our results suggest (see Section 5, Figure 9) that we need

an array that covers approximately 70% of the waveguide. This is because, as the array aperture decreases, the

minimum eigenvalue of Aarr tends to zero, which leads to numerical instabilities. To counter this phenomenon,

in our computations we take into account the eigenvalues νi of Aarr that stay above a certain threshold ε and,

consequently, we use only the first Mε functions Sj(z
′) and the M ×Mε matrix Wε. This leads to a low-rank

approximation of the full array version of Q, which affects the quality of the image that deteriorates compared

to the full aperture case as Mε decreases.

5 Imaging results

In this section, we asses the effectiveness of our active imaging functional Ia with numerical experiments. We

consider both the full and the partial array-aperture cases for a homogeneous waveguide that forms an infinite

or a terminating rectangular parallelepiped, as shown in Figure 7. Different array geometries are considered,

such as the ones shown in Figure 4. Regarding the scatterer geometry, we examine three cases: a point scatterer,

a two-dimensional square perfect reflector, i.e. a ‘screen’ that is perpendicular to the waveguide axis, and a

hemispherical scatterer.

z

y
x

A

O

D

W

Figure 7: Schematic representation of the active imaging problem in a parallepiped waveguide.

Using the single scattering Born approximation and denoting by O the domain occupied by the scatterer,

the array response matrix Π takes the form

Π(~xs, ~xr;ω) =

∫

O

G(~xs, ~x;ω)G(~x, ~xr;ω) d~x, (28)

where we omitted the (multiplicative) constant wavenumber k2. We use (28) to compute the data for the three

different scatterer geometries. For the Green’s function in (28) we use the analytical expression (32) for the

infinite waveguide case and (33) for the terminating one that are given in Appendix A. For a more general

waveguide geometry or for an inhomogeneous medium, the Green’s function and the array response matrix

should be computed numerically.

The image is obtained by displaying the values of the imaging functional Ia for points ~y s in the search

domain S,

Ia(~y s) =
M∑

i=1

M∑

j=1

βi βj Qij Gi(za, ~y
s) Gj(za, ~y

s). (29)

Here Q is the projected array response matrix (see (16) for the full-aperture case and Equations (25) and (26)

for the partial-aperture) and Gi is as in Equation (9).

15



We also introduce the multiple-frequency version of Ia, which is derived from (29) by summing over frequency,

i.e.

Ia(~y s) =

Nf∑

l=1

Ml∑

i=1

Ml∑

j=1

βi(fl) βj(fl) Qij(fl) Gi(za, ~y
s, fl) Gj(za, ~y

s, fl), (30)

where fl, l = 1, . . . , Nf , are the discrete frequencies that span the available frequency interval [fmin, fmax] in our

data. Note that Ml depends on the index l since the number of propagating modes depends on the frequency

fl.

In all following test cases the waveguide cross-section is C = [0, D] × [0,W ] and has dimensions D = 10λ0

and W = 20λ0, where λ0 is the reference wavelength corresponding to the reference wavenumber k0 = π/10.

Whenever we consider a single frequency it refers to the wavenumber k = 0.9875k0. The array is always placed

perpendicular to the waveguide axis at range za = 0, and the inter-element lattice parameter h is taken equal

to h = λ0/8. In the case of the terminating waveguide, the terminating vertical boundary is placed at range

R = 28λ0. Finally, the search domain S is a box with zxy-dimensions [17, 21]× [3, 7]× [8, 12], in terms of λ0.

Test case 1: A point scatterer

In our first test case we consider a single point scatterer located at ~x∗ = (19, 5, 10)λ0. We use a rectangular

array that spans the entire cross-section (full array-aperture) and consists of N = 13041 transducers that emit

at a single frequency. The entries of the N ×N array response matrix Π are given in (15).

In Figure 8 we plot the modulus of Ia, for the infinite waveguide in the left subplot and for the terminating

in the right one. Each image is normalized by the maximum value of the modulus of Ia and, moreover, we

only display the values of Ia with modulus larger than a threshold ℓ, which in this case is chosen as ℓ = 0.5.

We use this thresholding process to display the large values of the imaging functional that contain information

about the scatterer. This parameter ℓ is chosen on a case by case basis and will be specified separately in each

example. We also plot the projections of the image on z, x and y-planes with a gray ‘shadow’ color. Note that

these two images of the point scatterer in the case of an infinite and a terminating waveguide, respectively, are

in fact depicting the graph of the so-called point spread function (PSF) for the imaging functional Ia in each

case.

Figure 8: Imaging a point scatterer located at ~x∗ = (19, 5, 10)λ0 with Ia, for the full array case for the infinite

waveguide (left) and the terminating waveguide with R = 28λ0 (right) for a single frequency with k = 0.9875k0.

Here, the threshold ℓ = 0.5.

In both images in Figure 8 the scatterer is located with very good accuracy. Note that the image that

is shown on the right, which corresponds to the terminating waveguide, exhibits better resolution in range

compared to its counterpart for the infinite waveguide. In fact, using (18), we can prove that the resolution of

Ia in the terminating waveguide is equal to λ/2 in all directions, where λ is the wavelength that corresponds
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to the frequency that we use. For a detailed proof of this result in the case of a two-dimensional waveguide, we

refer to Ref. [28]. Here, we define the resolution of the image as the width of the main lobe at its half-height

(hence the choice of ℓ = 0.5), and is indicated in our plots with a circle, typed in blue, of diameter λ/2 that is

drawn on each plane and is centered at the projection of the true location of the point scatterer on each plane.

Test case 2: A screen parallel to the array

Next, we consider a two-dimensional square perfect reflector, a ‘screen’, that is placed in an infinite waveguide

parallel to its cross-section. The square scatterer has sidelength b = 2λ0 and is centered at ~x∗ = (19, 5, 10)λ0.

In this test case we shall experiment with arrays of various partial apertures, with arrays of different shapes,

and we shall also demonstrate the benefit of using multiple frequencies.

Furthermore, in order to assess the performance of our imaging functional Ia under the presence of measure-

ment noise, we add to the response matrix Π(ω) a noise matrix W (ω) with zero mean uncorrelated Gaussian

distributed entries with variance ǫpavg. Here the average power received per source, receiver and frequency is

given by

pavg =
1

N2Nf

Nf∑

i=1

‖Π(ωi)‖2F,

where ‖ · ‖F is the Frobenius matrix norm. Then, the normalized noise power in dB is −10 log10 ǫ. Specifically,

in all results that we are going to show next for the screen scatterer, we assume a level of additive noise of 10

dB.

Imaging with partial-aperture arrays – Single frequency. We first start with a single frequency (k =

0.9875k0) that corresponds to M = 584 propagating modes, and with a rectangular array that covers the entire

cross-section C. Then, we gradually decrease the area of the rectangular array keeping it always centered with

respect to the cross-section C. To be more specific, we remove array elements from the edges of the array and,

since W = 2D, we remove twice as many transducers in the y-direction than in x.

Figure 9: Imaging a vertical square screen of sidelength b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0 with Ia for the

full array case (left) and for centered rectangular arrays with |A| = 0.7225, 0.36, 0.16 |C| for a single frequency

with k = 0.9875k0 for 10 dB noise. Here, ℓ = 0.15.

In Figure 9 we present four images created with Ia that correspond, from left to right, to arrays that satisfy:

a) |A| = |C| (full array-aperture), b) |A| ≈ 0.72|C|, c) |A| = 0.36|C|, and d) |A| = 0.16|C|, respectively. In

each subplot we depict the three-dimensional reconstruction of the scatterer and its projection on all planes.

The projection of the actual boundary of the screen on each plane is indicated with a red line. As one may

immediately verify, the first two images that correspond to the full array-aperture and to the array that covers

approximately 72% of |C|, look almost identical. The value of the threshold ε is 10−6 while for |A| ≈ 0.72|C|
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the minimum eigenvalue of Aarr is equal to µmin = 1.15 · 10−5. Consequently, the number Mε (see Definition 1)

of functions Sj that are employed in the construction of the M ×M projected response matrix Q (see (25) and

(26)) is taken equal to M = 584. Then, as expected in view of the discussion below Equation (27), we do not

lose any information compared to the full-aperture case.

For the third and fourth images in Figure 9 that correspond to arrays that cover 36% and 16% of |C|,
respectively, it turns out that some eigenvalues of the matrix Aarr fall below the threshold ε resulting toMε = 403

and 225, respectively. This low rank approximation of the full array-aperture version of the projected matrix

Q leads to images with lower quality than the previous ones. However, even the fourth image in Figure 9

still provides good estimates of the location and the shape of the screen, given the fact that we illuminate the

scatterer with a single frequency and we use an array that covers just 16% of the area of the original array. In

terms of number of transducers, the array in the fourth image contains 2145 transducers compared to 13041

transducers that are supported in the full array aperture case.

Imaging with arrays of different shapes – Single frequency. Next, we shall use arrays of different

shapes in order to check whether, and in what extent, the shape of the array affects the Ia image. Specifically,

we have experimented with the four array shapes that we have already introduced, see Figure 4, namely a

rectangle, an ellipse, a quadrifolium and an annular ellipse. Here we shall present our results for arrays that

cover approximately 40% of |C| and for a single frequency. In the top row of Figure 10 the gray area indicates

the part of the cross-section C that each array covers, while in the bottom row we may see the associated

three-dimensional reconstructions of the screen.
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Figure 10: Top: Array shape. Bottom: Image of a square screen of sidelength b = 2λ0, centered at ~x∗ =

(19, 5, 10)λ0 with Ia for |A| ≃ 0.4 |C|, for a single frequency with k = 0.9875k0 for 10 dB noise. Here, ℓ = 0.15.

Array shape from left to right: Rectangle, ellipse, quadrifolium and annular ellipse.

These images, as well as other tests that we have performed with these four array types, indicate that arrays

of different shape that occupy approximately the same area furnish very similar Ia images.

Using multiple frequencies. A way to improve the quality of an image, especially when we use arrays

with small aperture, is to use multiple frequencies to illuminate the reflector. In Figure 11 we present multiple

frequency results for imaging with Ia. Specifically, the central frequency fc corresponds to the wavenumber

kc = 0.9875 k0 and we use frequencies f ∈ [fc −B/2, fc+B/2], where B denotes the bandwidth, which we take
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it here equal to B ≃ 0.92fc. On the leftmost plot, we present the Ia image for a rectangular array (centered to

the cross-section C) with |A| = 0.16|C|. It is immediate to see a clear improvement in the quality of the image

when we compare it with the rightmost image of Figure 9 which was created with the same array aperture but

with a single frequency illumination. The three other images in Figure 11 correspond, from left to right, to

centered rectangular arrays that cover an area |A| equal to 0.1225, 0.09 and 0.04 of |C|, respectively. Although,
as expected, the image does deteriorate as the array aperture decreases, we observe that reliable information

about the location, size and shape of the scatterer is obtained in all cases. It is worth noting that we are still

able to create a meaningful image by using only 4% of the original array, which is translated to 561 out of 13041

transducers.

Figure 11: Imaging a vertical square screen of sidelength b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0 with Ia for

|A| = 0.16, 0.1225, 0.09, 0.04|C| for frequencies with k ∈ [0.5375, 1.4375]k0, for 10 dB noise. Here, ℓ = 0.45.

Test case 3: A hemispherical scatterer

Lastly, we examine the more challenging case of a hemispherical scatterer that faces the array. The scatterer has

diameter b = 2λ0 and is centered at ~x∗ = (19, 5, 10)λ0. In Figure 12 we show Ia images for a full array-aperture

and a single frequency. The image on the left concerns the infinite waveguide case, while the one on the right

the terminating waveguide. As in the previous test cases, the projection of the true boundary of the scatterer

on each plane is marked with a red line. It is immediate to see that the image for the infinite waveguide, on

the left hand-side, is focused mainly on the leftmost part of the scatterer. On the other hand, the image for the

terminating waveguide on the right, provides a better estimate of the scatterer’s support. We may attribute this

improvement to the multiple reflections that bounce off the terminating boundary and provide us with diverse

views of the scatterer which are not attainable in the infinite waveguide case.

Next, to follow on from the results that we have presented for the square screen scatterer, we examine the

behavior of our imaging functional as the array aperture decreases. In Figure 13 we consider arrays with areas

equal to |A| = 0.72, 0.36, 0.16 |C|. We observe that for |A| = 0.72|C| the image looks virtually unchanged

compared to the full array case (right subplot in Figure 12). As we have already discussed in the previous test

case, for the given array aperture we use all M = 584, Sj functions in order to compute the projected response

matrix Q. However, as we decrease the array further we need to consider Mε < M , and the quality of the

image deteriorates, as expected. For |A| = 0.36|C| the image is more noisy but it still retains good information

about the location and the shape of the scatterer. For |A| = 0.16|C| we can still extract information about the

location of the scatterer, but the recovered shape is quite distorted.

As we have seen in Test case 2, we may use multiple frequencies in order to improve the quality of the image.

As before, we use a central frequency fc with wavenumber kc = 0.9875k0 and a bandwidth B ≃ 0.92fc. Now,

the image for |A| = 0.16|C|, shown in the leftmost subplot in Figure 14 manifests a significant improvement

compared to its single-frequency counterpart that is shown in the rightmost subplot in Figure 13. Now, we can
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Figure 12: Imaging a hemispherical scatterer of diameter b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0, with Ia

for the full array case for the infinite (left) and the terminating waveguide (right), for a single frequency with

k = 0.9875k0 and R = 28λ0. Here, ℓ = 0.18.

Figure 13: Imaging a hemispherical scatterer of diameter b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0, with Ia for

|A| = 0.72, 0.36, 0.16 |C| for a single frequency with k = 0.9875k0 and R = 28λ0. Here, ℓ = 0.18.

decrease the array size even more to |A| ≈ 0.12, 0.09, 0.04 |C|, and the corresponding images that are shown

in Figure 14 are still meaningful, in the sense that they provide information mainly about the location and the

size and, to a lower extent, about the shape of the scatterer.

To summarize, in this section we have presented imaging results for various scatterer and array geometries,

with data that were generated by the Born approximation, in order to assess the performance of our imaging

method. We first examined the PSF of our imaging functional in the case of an infinite and a terminating

waveguide that forms a rectangular parallelepiped. The other two test cases concerned extended reflectors and,

specifically, a screen and a hemisphere. We have experimented with various array sizes and shapes, with single

and multiple frequencies, and in the case of the screen we presented imaging results under the presence of 10

dB measurement noise.

For a single frequency, we have seen that as long as the array covers a significant part of the waveguide’s

cross-section (in our experiments approximately 75%), then the images that we get are almost the same with

those obtained with a full array-aperture. As the size of the array decreases the quality of the image deteriorates.

However, images that were created with arrays that covered approximately 16% of the waveguide’s cross-section

still provided useful information about the position and the shape of the scatterer.

The use of multiple frequencies greatly improved the effectiveness of our method allowing us to create

good images with arrays that covered approximately 5% of the waveguide’s cross-section. In the case of the

hemispherical scatterer we have observed a benefit of imaging in a terminating waveguide, in the sense that we

were able to fully reconstruct the shape of the scatterer by taking advantage of the multiple reflections due to

the presence of a ‘wall’ behind the obstacle. Finally, our tests indicate that arrays of different shape that cover
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Figure 14: Imaging a hemispherical scatterer of diameter b = 2λ0, centered at ~x∗ = (19, 5, 10)λ0, with Ia for

|A| = 0.16, 0.1225, 0.09, 0.04 |C| for frequencies with k ∈ [0.5375, 1.4375]k0 and R = 28λ0. Here ℓ = 0.2.

approximately the same area, and have the same element density, produce similar images.

6 Concluding Remarks

In this paper, we studied the problem of imaging extended reflectors embedded in three-dimensional waveguides,

using an active planar array that is parallel to the waveguide’s cross-section and may span its entirety or part

of it. We considered two cases, as far as the waveguide geometry is concerned: the infinite waveguide, which

allows waves to travel infinitely in both directions in range and the terminating waveguide, where, we assume

that there is an additional boundary on the right side of the waveguide, and consequently waves are only allowed

to propagate infinitely on the left side.

For both geometries, we use an imaging functional that relies on the back-propagation of a projection of the

array response matrix on the propagating modes. The main contribution of this paper is the definition of the

projection operator for arrays that partially cover the waveguide’s cross-section. This projection hinges upon

defining a finite-dimensional subspace of functions that are orthogonal along both the array and the waveguide

cross-section and exhibit maximum fractional concentration of energy in the array aperture.

Our imaging results illustrate that good reconstructions of extended scatterers are obtained for arrays

occupying a very small fraction of the waveguide cross-section, even for single-frequency illumination. The use

of multiple frequencies allows us to decrease the size of the array even further. We have also observed that

the reconstructions are better in the terminating waveguide compared to the infinite waveguide case. This

is intuitively expected, since in the terminating waveguide there exist multiple-scattering paths between the

scatterer and the terminating boundary, which provide us with more information about the reflector.

Acknowledgments

The work of C. Tsogka was partially supported by AFOSR FA9550-17-1-0238 and AFOSR FA9550-18-1-0519.

The work of S. Papadimitropoulos was supported by the Fund for the Promotion of Research at the Technion.

This work has been initiated while the authors were in residence at the Institute for Computational and Exper-

imental Research in Mathematics (ICERM) in Providence, RI, during the Fall 2017 semester (National Science

Foundation, Grant No. DMS-1439786). The inspiring ICERM/Brown University research environment and its

kind hospitality are warmly acknowledged.

21



A The Green’s function for a homogeneous waveguide with a rect-

angular transverse profile

In this appendix we present the Green’s functions for an infinite and a terminating homogeneous waveguide with

transverse profile the rectangle C = [0, D]× [0,W ]. Specifically, we consider the infinite waveguide Ωi = R× C
and the terminating one Ωt = (−∞, R] × C. The range variable along the waveguide axis is z, and the cross-

range coordinates are z
′ = (x, y) ∈ C. The Green’s function due to a point source at ~xs = (zs, z

′
s), for a single

frequency ω, solves the problem

{
−∆G(~x, ~xs;ω)− k2G(~x, ~xs;ω) = δ(~x− ~xs), ~x ∈ Ω,

G(~x, ~xs;ω) = 0, ~x ∈ ∂Ω,

where k = ω/c0 is the constant (real) wavenumber, and Ω = Ωi (or Ωt) in the case of the infinite (or terminating)

waveguide.

The simple geometry of the waveguide allows us to write explicitly the Green’s function in terms of the

eigenfunctions of the negative transverse Dirichlet Laplacian in C, i.e.

−∆z
′Φ = µΦ in C = [0, D]× [0,W ],

Φ = 0 on ∂C,
(31)

see also (3). We have discussed the properties of the eigenvalues µn and corresponding eigenfunctions Φn in

Section 2 (right after (3)).

Then the Green’s function in the case of the infinite waveguide[16] Ωi is written as

G(~x, ~xs;ω) =
i

2

∞∑

m=1

eiβm|z−zs|

βm
Φm(z′)Φm(z′

s), (32)

while in the case of the terminating waveguide[28] Ωt reads

G(~x, ~xs;ω) =
i

2

∞∑

m=1

eiβm|z−zs| − eiβm|z+zs−2R|

βm
Φm(z′)Φm(z′

s). (33)

In (32) and (33), βn are the horizontal wavenumbers that we have defined in (4).

Moreover, since C is a rectangle we are able to derive analytically the eigenpairs (µn,Φn). Separating the

cross-range variables x, y in (31), we end up with the two following one-dimensional eigenvalue problems:

{
X ′′(x) + κX(x) = 0 in [0, D],

X(0) = X(D) = 0,
and

{
Y ′′(y) + λY (y) = 0 in [0,W ],

Y (0) = Y (W ) = 0.
(34)

Then the eigenvalues and corresponding orthonormal eigenfunctions are given by

κn =
n2π2

D2
, Xn(x) =

√
2

D
sin

√
κnx, and λn =

n2π2

W 2
, Yn(y) =

√
2

W
sin

√
λny. (35)

Hence the eigenpairs (µn,Φn) of (31) are:

µn = µ(l,m) = κl + λm =
( l2

D2
+

m2

W 2

)
π2, Φn(z

′) = Φ(l,m)(x, y) = Xl(x)Ym(y), (36)

where n is the double-index (l,m).

Let us remark that although the eigenvalues of the one-dimensional problems (34) are simple, the eigenvalues

of the two-dimensional problem (31) may be degenerate (not simple) in the case where the ratio (D/W )2

is rational.[11] An eigenfunction that corresponds to a degenerate eigenvalue is a linear combination of the
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associated functions. For example, in the waveguide with the rectangular cross-section that we have considered

for our numerical experiments in Section 5, where W = 2D we have, e.g., that µ(2,2) = µ(1,4).

We close this section with some comments on the numberM of propagating modes in the previously described

waveguide. M is equal to the number of eigenvalues µn that are less than k2 = (2π/λ)2, where λ is the wavelength

that corresponds to the constant wavenumber k. Hence,

µn = µ(l,m) < k2 ⇔
( l2

D2
+

m2

W 2

)
π2 <

(2π
λ

)2

⇔ l2

(2D/λ)2
+

m2

(2W/λ)2
< 1. (37)

An estimate of M is given by Weyl’s conjecture which in two dimensions states that

M =
µ2(C)
4π

k2 − µ1(∂C)
4π

k + o(k) (k → ∞),

where µ2(C) and µ1(C) are the area and perimeter of C, respectively.[11] The second term in this asymptotic

representation is not rigorously proved for general domains. However, in our case where C is the rectangle

[0, D]× [0,W ] this results reads

M ≈ πDW

λ2
− D +W

λ
, (38)

and may be justified as follows: Consider the lattice Z2. Then, in view of (37), M is the number of lattice

points in the interior of the part of the ellipse with semi-axes 2D/λ and 2W/λ which lies in the first quadrant.

Number theory results assert that the area of the elliptic sector (π/4)(2D/λ)(2W/λ) is equal to the number M

of the lattice points in the elliptic sector plus half the number of the lattice points residing on the straight parts

of the boundary of the sector plus an error term of o(k).[24]

For example, in all results shown in Section 5 we assume D = 10λ0, W = 20λ0 (λ0 is a reference wavelength)

and, in some cases, we consider a single frequency that corresponds to a wavelength λ such that λ0/λ = 0.9875.

With these values the actual number of propagating modes is M = 584, while the estimate (38) predicts 583

propagating modes.
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