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Abstract

We consider the Helmholtz equation in a stratified cylindrically symmetric waveguide

overlying a rigid bottom. Nonlocal boundary conditions are posed at a near- and a far-

field artificial boundary. At the near-field boundary a nonhomogeneous DtN-type condition

that takes into account the effects of the source and of the backscattering from the rest of

the waveguide is posed. At the far-field boundary is used a condition associated with the

DtN map of the exterior problem. The problem is discretized by a standard Galerkin/finite

element method and is implemented in a Fortran code called FENL2. The code is tested

on some small scale problems and its results are compared with those of COUPLE and are

found to be in excellent agreement.

PACS no. 43.20.Bi, 43.20.Fn, 43.30.Gv

Short title: Near- and far-field nonlocal boundary conditions.

1 Introduction

The numerical solution of problems governed by the Helmholtz equation is still recognized as

an interesting and challenging task. In this paper we shall deal with applications in underwater
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acoustics, where the Helmholtz equation models the propagation of the sound field due to a

source that generates a continuous, time-harmonic signal. Specifically, we consider a cylindrically

symmetric waveguide consisting, for simplicity, of two fluid layers of different acoustic parameters

overlying a rigid bottom. Due to the axial symmetry it is convenient to introduce a cylindrical

coordinate system with its vertical axis passing through the source. The precise boundary-value

problem that we consider will be stated in the next section.

We shall use a finite element method to solve the problem, since this class of direct numerical

methods has been proved efficient in solving problems characterized by features such as medium

inhomogeneities, discontinuous coefficients, large discrepancies in the acoustic parameters of

the different layers and/or complex interface and bottom topographies. Of course, our domain

is unbounded so in order to discretize it we have to truncate it and formulate an equivalent

problem posed in the bounded part of the waveguide. This may be succeeded by introducing

two artificial boundaries at suitable values of range, near and far from the source, assuming

that all the range dependent features of the problem are localized in the bounded part of the

waveguide confined by these two boundaries, while near the source and in the exterior far-field

region the problem is range-independent enabling us to obtain analytic representations of the

sound field, which in turn are used to derive appropriate boundary conditions at the artificial

boundaries. At the far-field boundary the Dirichlet-to-Neumann (DtN) condition may be posed,

while at the near-field boundary another nonhomogeneous DtN-type condition may be derived,

relating the source field to the field in the rest of the waveguide.

For the far-field boundary this approach was first adopted for problems in underwater acous-

tics by Fix and Marin in [1], where they studied the case of a single layer axially symmetric

waveguide. Goldstein in [2] gave a convergence proof for a finite element method coupled with an

exact nonlocal boundary condition posed on an artificial boundary in a single layer waveguide in

Cartesian coordinates. The term DtN for this kind of exact non reflecting boundary conditions

has been established by Keller and Givoli in [3], where they constructed DtN conditions for

exterior problems in two and three dimensions. We refer to the book of Givoli, [4], for further

information on related work. We also refer to the paper by Thompson, [5], for a recent review

of finite element methods for problems governed by the Helmholtz equation, and to the paper

by Buckingham, [6], where a thorough report of various ocean-acoustic propagation models and

their special features may be found.

Another class of methods that have been used extensively in underwater acoustics is coupled
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mode methods, which extend the classical normal mode expansion of the acoustic field in a

horizontally stratified medium, see e.g. [7], or [8], in order to approximate the solution of

problems in range-dependent waveguides. Evans, in [9], constructed a coupled-mode model and

an associated code called COUPLE, see [10], which subdivides the waveguide into a sequence

of range-independent regions (using the staircase approximation to discretize variable interfaces

and bottom) and represents the acoustic field as a normal-mode series in each column. Then,

continuity of pressure and horizontal particle velocity is used across the inter-element vertical

interfaces resulting to a full two-way solution in terms of coupled modes. However, in case of

highly irregular interface or bottom topographies a large number of horizontal staircase steps

should be accounted for accuracy purposes leading to slow-rate of convergence. Over the last

two decades or so, some other coupled-mode approaches have been proposed trying to improve

the treatment of irregular bottom or interface topographies. Indicatively we refer to Rutherford

and Hawker, [11], Taroudakis et al., [12], Fawcett, [13], and Athanassoulis and Belibassakis, [14].

In the present paper we use a standard Galerkin discretization of the Helmholtz equation

coupled to nonlocal nonreflecting boundary conditions posed on two artificial boundaries near

the source and far from the source. This method is implemented in a code called FENL2, which

is a modified version of a code called FENL, originally written by Kampanis and Dougalis, see

[15]. In the prototype code FENL a Galerkin finite element discretization of the Helmholtz

equation in an axially symmetric two layer waveguide coupled with a DtN boundary condition

posed on a far-field boundary was implemented. At the near-field boundary a nonhomogeneous

Dirichlet boundary condition (of the form u = g) was used to approximate the acoustic field

u generated by the time-harmonic point source, where g was a given (complex) function of

depth. In practice the computed field by a coupled mode method was used as a boundary

condition on the inner artificial boundary. Thus, the FENL code was not self-contained and

of course depended on the modal data given on the near-field artificial boundary. FENL has

been tested and compared to other codes quite extensively. In [15] the code was tested on

several small scale examples and its results were compared with those of COUPLE. In [16],

an earlier version of FENL was compared to a coupled mode code, called MODE4, developed

by Taroudakis. In [17] there has been performed a detailed comparison between the results of

FENL with those of a coupled mode method (CCMM) by Athanassoulis and Belibassakis, [14],

and also of COUPLE. It was found out that, in general, the results of the three codes compared

very well, but at some frequencies increased discrepancies between FENL and the normal mode
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codes were observed. To be more specific, we have found that for some source frequencies for

which some eigenvalue of the local, vertical eigenvalue problem changed sign several times in

the neighbourhood of the inhomogeneity in the interface topography, the accuracy of the FENL

computations was depending on the position where the near-field (inflow) boundary was posed.

In FENL2, in order to avoid resonances due to the use of a modal starter, we have replaced the

nonhomogeneous Dirichlet boundary condition on the near-field boundary by an appropriate

nonhomogeneous DtN-type condition. This renders FENL2 a self-contained finite element code.

This paper is organized as follows: In Section 2 the geometry of the waveguide is specified

and we formulate the original problem in the semi-infinite waveguide. Next, we introduce two

artificial boundaries near the source and far from the source, that allow us to define a boundary-

value problem in a bounded domain which is equivalent to the original one, and we describe the

derivation of the DtN boundary conditions that we pose on them. In Section 3 we introduce the

suitable function space setting and describe the finite element method that is used to discretize

the boundary-value problem. Then, we briefly outline the code FENL2, which implements

the finite element discretization, and the various software packages to which it is coupled. In

Section 4 we present results of three numerical experiments that we performed with the code in

underwater waveguides consisting of two fluid layers, where the interface simulates an upslope, a

downslope and an underwater hill environment. In order to validate the code we have compared

our results with those of COUPLE, which is considered as the established benchmark code for

range-dependent problems. In all cases the results of the two codes were found to be in excellent

agreement.

2 Formulation of the problem

In this section we briefly present the formulation of the boundary-value problem that we are

going to study in the sequel. We consider a cylindrically symmetric waveguide consisting, for

simplicity, of two fluid layers overlying a rigid bottom, see Figure 1. A cylindrical coordinate

system is introduced with its origin placed at the free-surface and the vertical z–axis being

positive downwards. The surface (z = 0) is assumed to be horizontal, while the interface and

the bottom, denoted by Γint and Γbot, respectively, may vary with range.

Figure 1 is here.
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The upper layer Ω1 := Ωw
N ∪Ωw ∪Ωw

F represents the water column of constant density equal

to ρw, while the lower one Ω2 := Ωs
N ∪ Ωs ∪ Ωs

F represents the sediment layer which is also of

constant density equal to ρs (ρs > ρw). We point out that there is no attenuation neither in

the water column nor in the sediment layer. We also assume that the domain of the problem

consists of three parts: (a) The near-field bounded subdomain ΩN := Ωw
N ∪Ωs

N (for 0 ≤ r ≤ rN),

where the interface and the bottom are assumed to be horizontal at constant depths z = hN and

z = HN, respectively, (b) the intermediate bounded subdomain Ω (for rN < r < rF), and (c) the

far-field, unbounded subdomain ΩF := Ωw
F ∪Ωs

F (for r ≥ rF), where the interface and the bottom

are also assumed to be horizontal at constant depths z = hF and z = HF, respectively.

The sound speed is taken to be independent of r in ΩN and ΩF (i.e. c = cN(z) in ΩN and

c = cF(z) in ΩF), and varies smoothly from its near-field to its far-field value within each layer

in the intermediate subdomain Ω. The sound field is generated by a time-harmonic point source

of frequency f placed at r = 0 at a depth equal to zs, where 0 < zs < hN (i.e. it is assumed that

the source is located in the water column).

The formulation of the acoustic propagation problem in such an environment is well-known,

we refer e.g. to [8], [7]. The acoustic field (acoustic pressure) satisfies in each layer the Helmholtz

equation

∆u(r, z) + k2(r, z)u(r, z) = − 1

2πr
δ(r) δ(z − zs), (1)

where ∆u = urr+
1
r
ur+uzz (there is no dependence on the azimuth θ due to the axial symmetry)

and k (r, z) = ω/c (r, z) is the (real) wavenumber. Equation (1) is supplemented by boundary

and interface conditions. On the surface a homogeneous Dirichlet boundary condition (pressure

release) u = 0 is posed. The bottom is assumed to be acoustically hard, i.e. a Neumann

condition ∂u
∂n

= 0 holds. Across the interface the usual conditions hold, i.e. u is continuous

across Γint, and 1
ρw

∂u
∂n

∣∣∣
Γint−

= 1
ρs

∂u
∂n

∣∣∣
Γint+

, where n is the outward normal of the water layer

to the variable interface, and the ∓ symbols denote that the functions are evaluated at Γint by

their limits from Ωw and Ωs, respectively. Finally, a radiation condition is posed yielding that

u(r, z) behaves like an outgoing cylindrical wave as r → ∞.

2.1 Reformulation of the problem in a bounded domain

Since we are interested in solving the previously described problem with a direct numerical

method we have to truncate the semi-infinite domain and reformulate the original problem to

an equivalent in a bounded domain. One way to do this is to introduce two artificial boundaries.
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The first, denoted by Γ4, is placed at a distance r = R1, where 0 < R1 < rN, and will be referred

as the near-field boundary, and the second denoted by Γ2, is placed at a distance r = R2, where

R2 > rF, and will be referred as the far-field boundary. We shall also denote by Γ1, Γ3, and Γi

the parts of the bottom, the surface and the interface, respectively, lying between the cylinders

r = R1 and r = R2. Therefore, the boundary of the computational domain Ω := Ωw ∪ Ωs is

defined as ∂Ω := Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4. Now, suitable boundary conditions have to be posed on the

artificial boundaries. At the near-field boundary Γ4 a condition relating at r = R1 the acoustic

field generated by the time-harmonic point source to the backscattered field from the rest of

the waveguide may be posed. At the far-field boundary Γ2 a ‘transparent’ condition should be

posed, i.e. a condition which allows outgoing waves to pass through the artificial boundary Γ2

without producing any spurious reflections.

Then the original problem may be written as follows: We seek a complex-valued function

u(r, z), (r, z) ∈ Ω, such that

∆u + k2(r, z)u = 0 in Ωw ∪ Ωs, (2)

u |Γi−
= u |Γi+, (3)

1

ρw

∂u

∂n

∣∣∣∣
Γi−

=
1

ρs

∂u

∂n

∣∣∣∣
Γi+

, (4)

∂u

∂n
= 0 on Γ1, (5)

∂u

∂r
= T (u) on Γ2, (6)

u = 0 on Γ3, (7)

∂u

∂r
= R(u) + S on Γ4. (8)

The operator T appearing in (6) is the DtN integral operator associated with the exterior

acoustic field, the operator R in (8) is another integral operator relating the fields in Ω and in

the near-field region ΩN, and S is a function of z. In the sequel we shall present the derivation

of these conditions.

2.2 Inflow and outflow boundary conditions

In order to construct the inflow and outflow boundary conditions we follow the approach of

Evans, [9], to obtain analytic representations of the acoustic field in the near- and the far-field

domains ΩN and ΩF, respectively (see also Jensen et al., [8]):
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In the near-field region, i.e. for (r, z) ∈ ΩN, we get that

u(r, z) =

∞∑

n=1

αn J0(
√

λN
nr)ZN

n (z) +
i

4ρw

∞∑

n=1

H
(1)
0 (
√

λN
nr)ZN

n (zs)ZN
n (z). (9)

In the far-field region, i.e. for (r, z) ∈ ΩF, it holds that

u(r, z) =

∞∑

n=1

βn H
(1)
0 (
√

λF
nr)ZF

n(z). (10)

In (9) J0 is the Bessel function of zero order, H
(1)
0 is the Hankel function of the first kind and

zero order, and the first series is a solution of the homogeneous counterpart of Equation (1),

while the second series may be viewed as the source term. In (10) only Hankel functions of the

first kind are present due to the radiation condition. Furthermore, {λ∗

n, Z∗

n(z)}, n = 1, 2, . . .,

are the eigenvalues and the corresponding eigenfunctions of the two-point vertical eigenvalue

problem

d2Z∗

n

dz2
+
(
k2
∗
(z) − λ∗

n

)
Z∗

n = 0 in [0, h∗) ∪ (h∗,H∗], (11)

Z∗

n(0) = 0, (12)

Z∗

n(h∗−) = Z∗

n(h∗+), (13)

1

ρw

dZ∗

n

dz
(h∗−) =

1

ρs

dZ∗

n

dz
(h∗+), (14)

dZ∗

n

dz
(H∗) = 0, (15)

where, here and in the sequel, in place of the asterisk ∗, we read N in the near-field region ΩN,

and F in the far-field region ΩF.

We assume that the problem (11)–(15) is such that λ∗

n 6= 0, for all n. It is well-known that

the eigenvalues of this problem are real and form a decreasing sequence such that

max
z∈[0,H∗]

k2
∗
(z) ≥ λ∗

1 ≥ λ∗

2 ≥ . . . ≥ λ∗

n → −∞.

Let us assume that N∗ is a positive integer such that λ∗

n > 0, for n = 1, . . . ,N∗ (i.e. correspond

to the propagating modes), and λ∗

n < 0, for n = N∗ + 1,N∗ + 2, . . . (i.e. correspond to the

evanescent modes). We should like to note that we follow the convention that the square root
√

µ, for µ real, is taken to be equal to
√

µ, if µ ≥ 0, and to i
√−µ, if µ < 0.

We also assume that the eigenfunctions Z∗

n are orthonormal with respect to the weighted

L2-inner product

(w, u)L2
ρ(0,H∗) :=

∫ h∗

0
w udz + ρ

∫ H∗

h∗

w udz,
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where ρ := ρw

ρs
.

Now, we consider a fixed r′ ∈ (0, rN), we take the inner product of u and ZN
m with respect

to (·, ·)L2
ρ(0,HN), and we use Equation (9) and the orthonormality of ZN

n , n = 1, 2, . . ., to obtain

immediately that the coefficients αn satisfy the following relation

αn =
1

J0(
√

λN
nr′)

[(
u(r′, ·), ZN

n

)

L2
ρ(0,HN)

− i

4ρw
H

(1)
0 (
√

λN
nr′)ZN

n (zs)

]
, for 0 < r′ < rN. (16)

Similarly, for r′ > rF, Equation (10) and the orthonormality of ZF
n, n = 1, 2, . . ., with respect to

(·, ·)L2
ρ(0,HF), implies that the coefficients βn in (10) are given by

βn =
1

H
(1)
0 (

√
λF

nr′)

(
u(r′, ·), ZF

n

)
L2

ρ(0,HF)
, for r′ > rF. (17)

Next, we differentiate (9) with respect to r, and we evaluate the resulting expression at

r = R1. Using (16) and some properties of the special functions that are involved, we deduce

that the nonlocal inflow condition on Γ4 may be written in the form

∂u

∂r
(R1, z) = R(u)(z) + S(z), (18)

where

R(u)(z) :=

∞∑

n=1

an(u)ZN
n (z), (19)

S(z) := − 1

2πρwR1

∞∑

n=1

1

J0(
√

λN
nR1)

ZN
n (zs)ZN

n (z), (20)

and

an(u) =
√

λN
n

J ′

0(
√

λN
nR1)

J0(
√

λN
nR1)

(
u(R1, ·), ZN

n

)

L2
ρ(0,HN)

.

Analogously, the DtN map of the acoustic field in the exterior region ΩF, evaluated on Γ2, is

∂u

∂r
(R2, z) = T (u)(z) :=

∞∑

n=1

bn(u)ZF
n(z), (21)

where

bn(u) =
√

λF
n

H
(1)′

0 (
√

λF
nR2)

H
(1)
0 (
√

λF
nR2)

(
u(R2, ·), ZF

n

)
L2

ρ(0,HF)
.

In the sequel, we shall assume that the boundary-value problem (2)–(8) has a unique solution and

we refer to [2], and the references therein, for well-posedness results in the case of a perturbed

single-layer semi-infinite cylindrical waveguide.
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3 The finite element method

In the present section we shall show how to approximate the solution of the problem (2)–(8)

with the standard Galerkin/finite element method. In order to do so, we have to obtain a weak

formulation. First, we introduce some notation. Let
0

H (Ω,Γ3) be the space of complex-valued

functions u of r and z, defined on Ω, such that
∫

Ωw

|u|2 r drdz + ρ

∫

Ωs

|u|2 r drdz < ∞

and ∫

Ωw

(|ur|2 + |uz|2) r drdz + ρ

∫

Ωs

(|ur|2 + |uz|2) r drdz < ∞,

and vanishing on Γ3.

Then, the weak form of the boundary-value problem (2)–(8) is the following:

Seek u ∈
0

H (Ω,Γ3) such that

−(∇u,∇v)L2
ρ(Ω) + (k2u, v)L2

ρ(Ω)

+(T (u), v)L2
ρ(Γ2) − (R(u), v)L2

ρ(Γ4) = (S, v)L2
ρ(Γ4), (22)

for all v ∈
0

H (Ω,Γ3). The operators R and T are defined by (19) and (21), respectively, the

function S by (20), (∇u,∇v)L2
ρ(Ω) := (ur, vr)L2

ρ(Ω) + (uz , vz)L2
ρ(Ω), and

(u, v)L2
ρ(Ω) :=

∫

Ωw

u v r drdz + ρ

∫

Ωs

u v r drdz,

(u, v)L2
ρ(Γ4) :=

∫ hN

0
u v R1 dz + ρ

∫ HN

hN

u v R1 dz,

(u, v)L2
ρ(Γ2) :=

∫ hF

0
u v R2 dz + ρ

∫ HF

hF

u v R2 dz,

where ρ = ρw/ρs. We shall assume that (22) has a unique solution.

Let Th denote a triangulation of Ω with triangles of maximum sidelength h. We discretize

(22) by the finite element method with continuous in Ω piecewise linear functions defined on Th.

For simplicity, we assume that the interface and the bottom consist of straight line segments;

thus Ωw and Ωs are polygonal domains. We introduce the finite element space

0

V h := {φ : φ ∈ C(Ω), φ = 0 on Γ3, φ |τ∈ P1 ∀ τ ∈ Th}.

The space
0

V h is a finite dimensional subspace of
0

H (Ω,Γ3). Then the discrete analog of (22) is

the following: Seek uh ∈
0

V h, such that

−(∇uh,∇φ)L2
ρ(Ω) + (k2uh, φ)L2

ρ(Ω)

+(T̃ uh, φ)L2
ρ(Γ2) − (R̃uh, φ)L2

ρ(Γ4) = (S̃, φ)L2
ρ(Γ4), (23)
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for all φ ∈
0

V h. Here R̃, S̃ and T̃ are discrete approximations of R, S and T obtained by trun-

cating the series in (19), (20) and (21), respectively, after a finite number of terms. Specifically,

we shall denote by LN the number of terms that we retain in the series (19) and (20), and by

LF the number of terms that we retain in the series (21). In practice we take into account all

the propagating modes and sufficiently many of the evanescent.

Goldstein in [2] proved optimal order error estimates in H1 and L2 norms for a similar

discretization in the case of a homogeneous single-layer waveguide in Cartesian coordinates, and

he studied the effect brought upon the error by the truncation of the series in the DtN operator.

Analogous results for the case of an axisymmetric waveguide have been obtained in [18].

3.1 Implementation issues

We implemented the dicretization (23) in a Fortran code, referred to as FENL2 in the sequel.

This code is a modified version of the code called FENL, which was originally developed by

Kampanis and Dougalis and implemented a finite element method coupled with a DtN condition

posed on the artificial outflow boundary Γ2. FENL is described in detail in [15]. Here we shall

briefly describe FENL2, especially some of the various changes or additions that were performed

in FENL.

3.1.1 Triangulation of the domain

To triangulate the domain Ω we use the APNOPO module of the MODULEF library, [19]. This

general module selects various other modules to create and modify the mesh. Specifically, we

use the modules TRIGEO, which generates a triangular mesh with the use of an advancing front

method, or TRIHER, which corresponds to a Voronoi method. From the modification modules

we have mainly used RETRIN to refine the mesh, REGMA2 to regularize the mesh, and GIBBS

to renumber the nodes of the mesh. For more information on these modules we refer to [20].

The output of APNOPO is a NOPO data structure, which in turn is read by an appropriate

subroutine of FENL2, which provides the information required for the assembly of the finite

element matrices.

3.1.2 Assembly of the finite element matrices

We shall begin the assembly of the finite element matrices without imposing the Dirichlet

boundary conditions in our variational formulation. Hence we consider the finite element space
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Vh := {φ : φ ∈ C(Ω), φ |τ∈ P1 ∀ τ ∈ Th}. Let Nnd be the number of nodes of the triangulation

Th and {ϕi}i=1,...,Nnd
be the usual finite element basis. Now, letting uh =

∑Nnd
j=1 ujϕj and φ = ϕi,

i = 1, . . . , Nnd, in (23), we end up with the linear system

(−G + Q + B − C)u = s, (24)

where G, Q, B and C denote the Nnd × Nnd matrices with entries

Gij = (∇ϕj ,∇ϕi)L2
ρ(Ω), Qij = (k2ϕj , ϕi)L2

ρ(Ω),

Bij = (T̃ (ϕj), ϕi)L2
ρ(Γ2), Cij = (R̃(ϕj), ϕi)L2

ρ(Γ4),

and s the (column) vector with components si = (S̃, ϕi)L2
ρ(Γ4).

We should like to note that at this level the system (24) is not equivalent to (23) since it

remains to impose the Dirichlet boundary conditions on uh.

The entries of the stiffness matrix G and the mass matrix Q are computed as is done in the

prototype FENL, refer to [15] for details. Now, in order to compute the entries of the matrices

B and C and the vector s, we have to compute the eigenvalues and the eigenvectors of the

vertical eigenvalue problem (11)-(15), where ∗ is F or N depending on whether we work on Γ2

or Γ4. In FENL the vertical eigenvalue problem was solved with the standard Galerkin/finite

element method with continuous, piecewise linear functions on the partition induced on Γ2

by the triangulation Th. To solve it, routines from EISPACK, [21], were used. During this

procedure some extra care had to be taken to choose the discretization parameter δz on Γ2

sufficiently small in order to obtain good approximations of the actual eigenpairs, since the

number of the numerically acceptable eigenpairs, which is less or equal to the dimension of the

finite element space on Γ2, is inversely depending on the discretization parameter δz, cf. [22].

This kind of approach may possibly lead to very fine grids near the artificial boundaries when

the number of modes that contribute in R̃, S̃ and T̃ is large. To avoid this, in FENL2, we have

calculated the eigenpairs {λN
h,n, ZN

h,n} and {λF
h,n, ZF

h,n} of the vertical eigenvalue problems on Γ4

and Γ2, respectively, in a sufficiently fine grid ensuring that we obtained good approximations

of all the propagating and the most significant of the evanescent modes, and then we evaluate

them on the boundary nodes induced by the triangulation Th by linear interpolation. Now,

let {1, 2, . . . ,MN} be a successive numbering of all the nodes lying on the inflow boundary Γ4

excluding the node (R1, 0), and {1, 2, . . . ,MF} be a successive numbering of all the nodes lying

on the outflow boundary Γ2 excluding the node (R2, 0). Let also jℓ denotes the global number
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in Th of the ℓth node (1 ≤ ℓ ≤ MN) that lies on Γ4 and mℓ denotes the global number in Th

of the ℓth node (1 ≤ ℓ ≤ MF) that lies on Γ2. Then the eigenvector ZN
h,n corresponding to the

inflow approximate eigenvalue λN
h,n may be written as ZN

h,n =
∑MN

ℓ=1 cn,ℓϕjℓ
|Γ4 , and, similarly,

the eigenvector ZF
h,n corresponding to the outflow approximate eigenvalue λF

h,n may be written

as ZF
h,n =

∑MF
ℓ=1 dn,ℓϕmℓ

|Γ2 . Now we are in a position to write the (i,m) entry of matrix B, the

(i, j) entry of matrix C and the ith component of the vector s in the following form

Bim =
(
T̃ (ϕm), ϕi

)
L2

ρ(Γ2)
=

=

LF∑

n=1

Bh,n

(
MF∑

ℓ=1

dn,ℓ

(
ϕm(R2, ·), ϕmℓ

(R2, ·)
)

L2
ρ(0,HF)

)(
MF∑

ℓ=1

dn,ℓ (ϕmℓ
, ϕi)L2

ρ(Γ2)

)
, (25)

Cij =
(
R̃(ϕj), ϕi

)
L2

ρ(Γ4)
=

=

LN∑

n=1

Ch,n

(
MN∑

ℓ=1

cn,ℓ

(
ϕj(R1, ·), ϕjℓ

(R1, ·)
)

L2
ρ(0,HN)

)(
MN∑

ℓ=1

cn,ℓ

(
ϕjℓ

, ϕi

)
L2

ρ(Γ4)

)
, (26)

si =
(
S,ϕi

)
L2

ρ(Γ4)
= − 1

2πρ1R1

LN∑

n=1

Sh,n ZN
h,n(zs)

(
MN∑

ℓ=1

cn,ℓ

(
ϕjℓ

, ϕi

)
L2

ρ(Γ4)

)
, (27)

where

Bh,n :=





−
√

λF
h,n

H
(1)
1

(
q

λF
h,n

R2

)

H
(1)
0

(
q

λF
h,n

R2

) , if λF
h,n > 0

−
√

−λF
h,n

K1

(
q

−λF
h,n

R2

)

K0

(
q

−λF
h,n

R2

) , if λF
h,n < 0

,

Ch,n :=





−
√

λN
h,n

J1

(
q

λN
h,n

R1

)

J0

(
q

λN
h,n

R1

) , if λN
h,n > 0

√
−λN

h,n

I1

(
q

−λN
h,n

R1

)

I0

(
q

−λN
h,n

R1

) , if λN
h,n < 0,

,

and

Sh,n :=





1

J0

(
q

λN
h,n

R1

) , if λN
h,n > 0

1

I0

(
q

−λN
h,n

R1

) , if λN
h,n < 0

.

Here Iν and Kν are the modified Bessel functions of the first and second kind, respectively.

The values of the special functions involved in the above formulas are computed with the aid of

Fortran subroutines in double precision from the SPECFUN 2.5 library which is freely available

from NETLIB (http://www.netlib.org/).
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Finally, to impose the Dirichlet boundary conditions we follow the same technique as in

FENL. If aj denotes a node belonging to Γ3, then the jth component of the vector u is zero.

This is implemented by setting the jth row and column of the matrix −G +Q+ B − C equal to

zero, its (j, j) entry equal to 1, and the jth component of the vector s equal to zero.

3.1.3 Solving the linear system

The resulting linear system is large, sparse, indefinite and complex symmetric, and is solved

with methods from the QMRPACK software package, [23]. QMRPACK contains implemen-

tations of various Quasi-Minimal Residual (QMR) iterative algorithms, cf. [24]. These are

iterative schemes that belong to the general class of Krylov subspace methods, involve few–term

recurrences, and are applicable to systems with nonsingular, complex, not necessarily Hermitian

matrices. In our tests in the present paper we have mainly used the double precision complex

version of CPL, which is based on the coupled two-term Lanczos with look-ahead, cf. [25]. From

the built-in preconditioners of QMRPACK we have experimented mainly with two-sided SSOR

and two-sided ILUT. We would like to report that we have noticed that the numbering of the

nodes of the triangulations and, hence, the sparsity pattern of the coefficient matrix played an

important role to the linear system solver, especially when preconditioners based on incomplete

factorization were used. We refer to Benzi et al., [26], for details concerning this phenomenon.

Thus, in all cases extra care was taken, and a reordering module of MODULEF was used, in

order to decrease the bandwidth of the coefficient matrix and, consequently, improve the effi-

ciency of the preconditioner. We should also like to note here that most of the computational

effort of the finite element method is devoted in solving the linear system.

Finally, to produce one- or two-dimensional plots we used MATLAB’s PDE Toolbox, [27],

with the aid of a routine which exports the data (triangulation information and solution at the

nodes) from FENL2 in the appropriate format needed by the graphics module.

4 Numerical experiments

In this section we present the outcome of some numerical experiments that we performed with

the code FENL2 in stratified marine environments with variable interface. In all cases we

compare our results with COUPLE. (For a detailed comparison of the prototype FENL with

other coupled mode methods refer to [17].) Here we shall examine three cases corresponding

13



to interfaces that simulate an upslope, a downslope and an underwater hill environment. In all

cases the densities and the sound speeds of the seawater and the sediment are taken constant

and equal to ρw = 1.0 g/cm3, cw = 1500 m/sec in the water layer and ρs = 1.5 g/cm3,

cs = 1700 m/sec in the sediment. The hard horizontal bottom is placed at a depth equal to

100 m. We have experimented with relatively low source frequencies up to 50 Hz, in order to

keep the computational demands in fairly low levels, since it is well known that the error in

the finite element solution grows as the frequency increases and the discretization parameter

h and the wavenumber k should be adjusted in order to achieve a given accuracy level. In

fact, many authors follow a rule of the form kh = const., by assuming a constant number of

elements (usually ten) per wavelength. However, it has been found that this is not enough as

the frequency (and, consequently, the wavenumber) increases, and that the error in the L2 norm

remains bounded when k3h2 is kept constant, while it grows with k for kh = const.. This result

has been numerically verified by Bayliss et al., [28], [29], for two-dimensional model problems in

Cartesian coordinates, and more recently by Oberai and Pinsky, [30], for more general problems

and non-uniform meshes. Ihlenburg and Babuška, [31], provide analytical estimates for a one-

dimensional model problem which indicate that it suffices to keep k3h2 constant in order to

avoid a growth of the relative L2-error. For more details we refer to the book of Ihlenburg, [32].

In all examples we ran COUPLE with a range step δr = 1.0 m, and the number of the

contributing modes was taken equal to 15. (The rigid bottom in COUPLE was simulated by

assuming very large values for the density and the sound speed in the semi-infinite layer used by

COUPLE.) In all FENL2 runs the far-field boundary was posed at R2 = 750 m, and as a linear

system solver we used CPL of QMRPACK, combined with the two-sided SSOR preconditioner

with parameter ω = 1.2. In all examples we shall report the size of the grid used by FENL2,

the value of R1, i.e. the distance where the near-field boundary condition is posed, the number

of modes that propagate at the artificial boundaries, the number of modes that were taken

into account in the calculation of the near-field and the far-field boundary condition, denoted

by LN and LF, respectively (see the formulas (25)–(27)). We shall also report the number of

iterations and the CPU-time that the linear system solver needed to converge, and the values of

ξw and ξs, where ξi is an indicative parameter measuring the number of average size meshlengths

contained in a wavelength in the water (i = w) or the sediment (i = s), for constant sound speeds

cw = 1500 m/sec and cs = 1700 m/sec in the two media. We would like to note that care has

been taken and R1 has been chosen so that
√

λN
h,nR1 is not a root of the Bessel function J0, for
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n = 1, 2, . . . , NN, where NN is the number of modes that propagate at r = R1. All the FENL2

runs were performed on a Pentium IV PC with a RAM of 1 GB running under Linux at 2.4 GHz.

Example 1: Upslope. As a first example we consider the case of an upslope interface defined

by the curve

h(r) =





75 , for 0 < r ≤ 300,

50 − 25 sin 2π(r−500)
800 , for 300 < r < 700,

25 , for r ≥ 700.

(All distances are in meters.) The source is placed at a depth equal to 20 m and the near-field

boundary is posed at R1 = 250 m. In Figure 2 we present two-dimensional transmission loss

plots obtained by the COUPLE and the FENL2 codes, for a frequency f = 25 Hz.

Figure 2 is here.

Figure 3 shows superimposed one-dimensional plots of transmission loss vs. range at a receiver

depth RD = 50 m. (This plot was extracted from the run that gave the 2D plots of Figure 2.)

The results are in excellent agreement. For the FENL2 run we used a triangular mesh consisting

of 40896 elements and 20809 nodes (ξw = 38, ξs = 43). Three modes propagate both at the

near-field and at the far-field boundary. We took LN = 10 and LF = 5. The linear system solver

required 712 iterations and 19 secs of CPU time to converge.

Figure 3 is here.

In order to give some idea for the convergence of the iterative solver we plot in Figure 4 the

convergence curve, i.e. the relative residual norm vs. the number of iterations. As a convergence

criterion we took the relative residual norm to be less than 10−12. The behaviour presented in

Figure 4 is quite typical in all the test cases examined in this paper, therefore we shall not

include such figures for the rest of the examples.

Figure 4 is here.

Figures 5 and 6 show two- and one-dimensional transmission loss plots obtained by COUPLE

and FENL2 for a higher frequency of f = 50 Hz. Now, six modes propagate at the artificial

boundaries and LN = 15 and LF = 7. The triangular mesh was consisting of 72704 elements and

36833 nodes (ξw = 26, ξs = 29). The linear system solver required 2621 iterations and 120 secs

of CPU time to converge. The results again compare very well.
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Figure 5 is here.

Figure 6 is here.

Example 2: Downslope. In a second example we consider the case of a downslope interface

defined by the curve

h(r) =





25 , for 0 < r ≤ 300,

50 + 25 sin 2π(r−500)
800 , for 300 < r < 700,

75 , for r ≥ 700,

(All distances are in meters.) The source is placed at a depth equal to 20 m and R1 = 250 m.

Figure 7 shows two-dimensional transmission loss plots obtained by the COUPLE and the FENL2

codes, for a frequency f = 25 Hz.

Figure 7 is here.

In Figure 8, the superimposed one-dimensional plots of transmission loss vs. range at a receiver

depth RD = 50 m confirm the excellent agreement between the results of the two codes. For the

FENL2 run we used a triangular mesh consisting of 40896 elements and 20809 nodes (ξw = 38,

ξs = 43). At the artificial boundaries three modes propagate. We took LN = 10 and LF = 5.

The linear system solver required 730 iterations and 19 secs of CPU time to converge.

Figure 8 is here.

Figures 9 and 10 show two- and one-dimensional transmission loss plots obtained by COUPLE

and FENL2 for an increased frequency of f = 50 Hz. Here LN = 15 and LF = 7. The triangular

mesh was consisting of 72704 elements and 36833 nodes (ξw = 26, ξs = 29). The linear system

solver required 2025 iterations and 93 secs of CPU time to converge. The results again compare

very well.

Figure 9 is here.

Figure 10 is here.
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Example 3: Hill. In this last example we would like to assess the significance of incorporating

this new near-field condition. To this end we shall compare the results obtained by FENL2, with

those of COUPLE, and also with those obtained by the prototype FENL. Now the interface forms

an underwater hill given by

h(r) =





50 − 25 cos 2π(r−500)
400 , for 300 < r < 700,

75 , elsewhere.

(All distances are in meters.) The source is placed at a depth equal to 25 m, and the frequency is

equal to f = 27.80 Hz. In order to run FENL we have used as a near-field condition (on r = R1)

a Dirichlet boundary condition of the form u(R1, z) = g(z), where g(z) is the field obtained by

COUPLE at r = R1.

Figure 11 shows superimposed one-dimensional TL plots for a receiver depth RD = 50 m

obtained by the three codes when R1 = 100 m. For FENL and FENL2 runs we have used

exactly the same grid consisting of 52632 elements and 26767 nodes (ξw = 34, ξs = 39). The

linear system solver, for the FENL run, required 1456 iterations and 48 secs of CPU time to

converge, while for the FENL2 run the corresponding values were 1324 iterations and 44 secs.

The reader may immediately verify that the results of FENL2 are in excellent agreement with

those of COUPLE, while there is some discrepancy with those obtained by FENL.

Figure 11 is here.

Next we run the three codes with the near-field boundary posed at R1 = 150 m. Now the

grid used by FENL and FENL2 consists of 48492 elements and 24667 nodes (ξw = 34, ξs = 39).

For the FENL run the linear system solver required 1069 iterations and 33 secs of CPU time to

converge, and 1001 iterations and 31 secs for the FENL2 run. Figure 12 shows superimposed

TL plots for a receiver depth RD = 50 m. Now the results of the three codes compare very well.

Figure 12 is here.

This kind of dependence of FENL’s results on R1, for some source frequencies, when data

from coupled mode codes are used as a starting field for FENL has been first discovered and

studied in some detail in [17]. To be more specific, in [17], it has been noticed that in some cases,

where the frequency was such that an eigenvalue of the vertical problem changed sign several

times and remained small in a neighbourhood of the interface inhomogeneity, the accuracy of
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FENL’s results was depending on the position R1 of the starting field. For the frequency of

27.80 Hz four modes propagate at the artificial boundaries but in the vicinity of the hill the

fourth mode changes its character from propagating to evanescent and vice versa several times,

since the fourth eigenvalue of the vertical problem changes sign there, see Figure 13. We refer

to [17] for a detailed discussion of this phenomenon.

We would like to note that in the previous two examples the results obtained by FENL were

in perfect agreement with those obtained by COUPLE and FENL2.

Figure 13 is here.

5 Concluding remarks

We have presented a code named FENL2 which implements a finite element method for the

Helmholtz equation in an inhomogeneous cylindrically symmetric waveguide consisting of two

fluid layers. The waveguide is bounded in depth by a rigid bottom. Part of the bottom and

the interface is assumed to be range-dependent. The code discretizes efficiently near- and far-

field boundary conditions posed on two artificial boundaries. The near-field condition is a

nonhomogeneous DtN-type condition relating the field near the source to the field in the rest of

the waveguide. The far-field condition is obtained by the classical DtN map of the associated

exterior problem. The code FENL2 is a modified version of a prototype code called FENL.

The main new ingredient in FENL2 is the introduction and implementation of a near-field

boundary condition. This new feature is of some importance since it makes FENL2 a self-

contained finite element code, in the sense that it does not depend on data given by other codes

on the near-field boundary, as opposed to the prototype FENL. The code has been successfully

tested and compared to COUPLE in various small scale examples and for relatively low values

of source frequency. The main restriction in the current version of the code comes from the

triangulator, i.e. our Fortran implementation of MODULEF, which may handle a moderate

number of elements and nodes. In the future we intend to experiment with other triangulators

that produce, and are capable of handling, larger meshes.

Future work includes the replacement of the rigid bottom assumption by a more realistic

one and the addition of attenuation (absorption) in the medium. Ideally, the lowest boundary

should not reflect any acoustic energy back, hence a complete formulation would, perhaps, entail

posing at the bottom another suitable absorbing condition.
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Figure 2: Upslope. Transmission loss plots of COUPLE and FENL2. f = 25 Hz.
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